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A B S T R A C T 
Urban growth results in several changes, mainly related to 
demographic, social, economic, and environmental aspects, 
leading to a new connotation in the use and occupation of 
land. This new scenario impacts the local energy balance, 
creating what is called an “urban heat island”. This study aims 
to investigate the occurrence of urban heat islands in Recife 
city, the capital of Pernambuco, Brazil, based on the processing 
of biophysical parameters, the classification of land use and 
occupation, and surface temperature. The orbital images 
of the study region were obtained and processed using the 
Google Earth Engine cloud processing platform from 2013 to 
2021. The results showed an increase in areas with greater 
urban density and a reduction in areas with vegetation. It was 
realized that in regions with greater urban density, the surface 
temperature observed was up to 5.20°C higher than in the area 
with vegetation.
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R E S U M O
Do crescimento urbanístico resultam diversas alterações relacionadas, 
principalmente, com aspectos demográficos, sociais, econômicos e 
ambientais, decorrendo em uma nova conotação no uso e ocupação 
do solo. Esse novo cenário impacta o balanço energético local, 
gerando, como é conhecida, uma “ilha de calor urbana”. Esta pesquisa 
objetiva investigar a ocorrência de ilhas de calor urbana na cidade 
do Recife, capital de Pernambuco, Brasil, a partir do processamento 
de parâmetros biofísicos, da classificação do uso e ocupação do 
solo e da temperatura da superfície. As imagens orbitais da região 
de estudo foram obtidas e processadas utilizando-se a plataforma 
de processamento em nuvem Google Earth Engine, para o período 
de 2013 a 2021. Os resultados evidenciaram a ocorrência de um 
aumento das áreas com maior densidade urbana e uma redução 
das áreas com vegetação. Constatou-se que nas regiões com maior 
densidade urbana, a temperatura de superfície observada foi até 
5,20°C mais elevada do que na área com vegetação.

Palavras-chave: Built-Up Index; índices biofísicos; Google Earth Engine.
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Introduction
Urbanization is an anthropogenic alteration that generates changes 

in surface materials due to vegetation suppression, albedo variation, 
and soil impermeabilization, influencing the local energy balance 
(Almeida et al., 2021). According to Borges et al. (2022), artificial sur-
face covers significantly modify the radiation components of energy 
balance and near-surface wind, contributing to the formation of urban 
heat islands (UHI).

Studies by Cheela et al. (2021) and Yin et al. (2023) stated that the 
characteristics of cities’ spatial configuration, the different types of land 
use such as darker surfaces, vegetation, and water distribution, as well 
as the absorption of long-wave radiation in peri-urban areas, and the 
significant increase in the temperature difference of the underlying 
surface contribute to the formation of the heat island effect.

Research on UHI has gained popularity in recent decades due to 
the growing recognition of thermal stress impacts on human health, 
environments, and urban resilience. The development of remote sens-
ing technology has been widely applied to UHI research to understand 
its spatiotemporal characteristics better (Diem et al., 2024).

Using orbital data, it is possible to process land surface tempera-
ture (LST), which provides a thermal perception of the Earth’s surface 
depending on land use/cover categories. According to Bagyaraj et al. 
(2023), the mathematical formulation of LST takes into account the 
physical process of surface energy to provide information on temporal 
variations. It serves as an indicator for monitoring vegetation as well as 
climatic and construction-related changes.

Increasing LST is an early indicator of potential risks and helps 
understand climate change. Therefore, the subject is current, and sev-
eral studies have already reported on LST (Imran et al., 2019; Almeida 
et al., 2021; Moazzam et al., 2022; Venkatraman et al., 2024).

However, UHI studies’ limitations include dependence on static 
datasets, neglect of microscale variations, and potential oversimplifi-
cation of complex urban dynamics. These limitations can hinder ac-
curate assessments of heat island effects, impacting the development 
of effective mitigation strategies for urban areas, as Venkatraman et al. 
(2024) highlighted.

To address these limitations, Ward et al. (2016) emphasized that 
remote sensing techniques can create spatially explicit UHI maps and 
models, allowing the detection of sensitive urban areas and the appli-
cation of focused mitigation and adaptation strategies.

According to Peng et al. (2012) and Ward et al. (2016), the only 
way to observe temperature patterns in cities explicitly and compre-
hensively is through aerial perspective using thermal remote sensing, 
which provides LST.

The research conducted by Barros and Lombardo (2016) attested 
to the efficiency of surface temperature measurements from Landsat 5 
Thematic Mapper images in the municipality of São Paulo (SP), Brazil. 
Thus, thermal satellite images offer great potential for improving the 

understanding of urban climate dynamics. However, one of the lim-
itations in the approach applied to remote sensing refers to the metic-
ulous acquisition of orbital images, since cloud incidence and spatial 
resolution can influence the results generated.

In this context, the research gap study examined the problem of 
UHI in Recife and the correlation of this phenomenon with the tem-
poral variability of land use and land cover, using remote sensing tech-
niques through cloud processing with the JavaScript programming 
language.

Methodology

Study area
The city of Recife, the capital of the state of Pernambuco, is located 

in the Northeast region of Brazil, at the coordinates 8º04’03’’ South lat-
itude and 34º55’00’’ West longitude (Figure 1). According to data from 
the Brazilian Institute of Geography and Statistics (IBGE, 2022), Recife 
has a territorial extension of 218.843 km2, with an estimated popula-
tion of 1,653,461 inhabitants and a population density of 7,039.64 in-
habitants/km2 (2020).

Cabral and Alencar (2005) emphasized that Recife has a hot and 
humid tropical climate, with a plain formed by fluvial-marine sedi-
ments and semi-surrounded by hills. The Metropolitan Region of Re-
cife is located in the intertropical zone, with an urban area situated 
approximately 8° South of the Equator. Due to its location at low lati-
tudes, it presents monthly average temperatures above 25°C, an annual 
thermal amplitude above 5°C, and an average annual relative humidity 
of 84% (Mendes et al., 2019).

Figure 1 – Location of the study area.
SIRGAS: Geodetic Reference System for the Americas; UTM: Universal Trans-
verse Mercator. 
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Recife is characterized by being densely urbanized, with most of 
its extension occupied by buildings and paved streets, except for areas 
covered by watercourses and small green areas corresponding to parks, 
squares, and mangroves.

Analysis of rainfall and external ambient temperature
Meteorological data were exported from the National Institute of 

Meteorology (Instituto Nacional de Meteorologia [INMET], 2022) data-
base, obtained from the automatic surface observation meteorological 
station installed in the Várzea neighborhood of Recife (Recife A301).

This station collects data on external ambient temperature, relative 
humidity, precipitation, solar radiation, wind direction and speed, and 
atmospheric pressure. Monthly accumulated precipitation and month-
ly average temperature data were used for the region’s climatic analysis 
(INMET, 2022). Figure 2 shows the city of Recife’s climograph for the 
years 2013, 2019, and 2021. 

Bagyaraj et  al. (2023) stated that meteorological factors such as 
air temperature, precipitation, humidity, and wind speed significantly 
affect increasing surface temperature, highlighting the importance of 
understanding the variability of precipitation and temperature in the 
study area over the years.

It was evident that the months from April to August showed higher 
precipitation values, characterizing the region’s rainy season, and during 
this period, lower air temperatures were observed. The months from 
September to February registered the lowest monthly precipitation val-
ues, identifying the dry season with higher ambient temperature values.

A trend of higher precipitation values in 2021 was observed com-
pared to the other years. May had the highest recorded precipitation, 
totaling 533.600 mm, 215.4 mm higher than in 2013 and 312.68 mm 
higher than in 2019. According to Diem et al. (2024), precipitation pat-
terns can be altered by rising temperatures in cities, modifying atmo-
spheric circulation between urban and rural areas.

The year 2021 revealed the lowest precipitation values during the 
dry season, with January being the hottest month (27.66°C). In  that 
month, the recorded precipitation was 53.2 mm, 54.4 mm lower 
than in 2019 and 42.0 mm lower than in 2013 for the same month.  

The highest temperature during the period was recorded in December 
2019 (28.09°C), with precipitation of 88 mm, 165 mm lower than in 
December 2013.

Remote sensing processing

Pre-processing
The acquisition and processing of orbital data were carried out us-

ing the Google Earth Engine cloud processing platform’s code editor, 
with the code written in JavaScript. After thoroughly searching avail-
able images for the study area, those with the least cloud occurrence 
were selected. Therefore, images from July 28, 2013 and October 17, 
2019, from the Landsat 8 satellite - Operational Land Imager (OLI) 
sensor (Table 1), and from June 26, 2021, from the Sentinel-2 Multi-
spectral Instrument (MSI) satellite were chosen.

The orbital images and vector files were reprojected to SIRGAS 
2000 (Geodetic Reference System for the Americas), Universal Trans-
verse Mercator (UTM) Zone 25 South. After acquiring the images, the 
processing was performed, considering the clipping of the scene ac-
cording to the area of interest. For the composition of georeferenced 
maps with the processed biophysical parameters images—Normalized 
Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Normal-
ized Difference Built-Up Index (NDBI), Built-Up Index, and LST—the 
Quantum Geographic Information System (QGIS) software version 
2.18.16 and version 3.10 print composition tool was used.

Processing of biophysical parameters
The images obtained from the Landsat 8 OLI were used for process-

ing NDVI, LAI, NDBI, Built-Up Index, and LST, and those obtained from 
the Sentinel-2 MSI were used for processing NDVI, NDBI, and Built-Up 
Index because the orbital images exported by MSI do not have a thermal 
band and, therefore, cannot be applied to surface temperature processing.

The processing of biophysical parameters was carried out with the 
Google Earth Engine code editor. The Landsat 8 Collection 2 Tier 1 
calibrated top-of-atmosphere reflectance and Sentinel-2 MSI Level-1C 
satellites obtained the corrected planetary reflectance for each band.

Figure 2 – Climogram of the city of Recife in 2013, 2019, and 2021. 

Table 1 – Date of the image, time, sun elevation angle, and satellite point.

Source: Google Earth Engine (2022). 
UTM: Universal Transverse Mercator.

Satellite Landsat 8 - Operational Lander Imager (OLI)

Date Time (UTM) Sun Elevation Angle Orbit Point

28/07/2013 12:31:03.60 51.24 214 65

17/10/2019 12:29:27.88 65.97 214 65

Satellite Sentinel 2 - Multispectral Instrument (MSI).

Date U.S. Military Grid Reference System

26/06/2021 25MBM
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The NDVI allows for detecting seasonal and interannual changes 
in vegetation development and activities, enabling the temporal profile 
of growth and peak green. It varies between -1 and +1, with values 
between 0 and 1 for green vegetation surfaces and values below zero 
for water or clouds (Rouse et  al., 1973). NDVI was calculated using 
Equation 1.

NDVI = 
ρNIR - ρRED
ρNIR + ρRED

 (1) 

 

Where: 

ρNIR = reflectance of the near-infrared band; and 

ρRed = reflectance of the red band. 
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Where:
ρNIR = reflectance of the near-infrared band; and
ρRed = reflectance of the red band.

The NDBI was developed to identify urban and built-up areas 
(França et  al., 2012). It is based on the increased spectral response 
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Where:
ρMIR = reflectance of the mid-infrared band; and
ρNIR = reflectance of the near-infrared band.

The Soil-Adjusted Vegetation Index (SAVI) accounts for the effects 
of exposed soil in the analyzed images (Huete, 1988) and is calculated 
using Equation 3. The LAI represents the leaf area ratio to the area oc-
cupied by that vegetation and serves as an indicator of biomass within 
a pixel. It was processed according to Allen et al. (2002) using Equation 
4. For LAI values lower than 3, the surface emissivity is calculated us-
ing Equation 5, also from Allen et al. (2002).
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Where:
ρNIR = near-infrared band;
ρRed = red band; 
L = constant for the index; 
ln = natural logarithm, or Napierian logarithm; and
εNB = emissivity.

The constant for the index (L) is often presented in the literature 
as a value of 0.5. Emissivity (εNB) represents the surface’s behavior for 

thermal emission in the relatively narrow band of Landsat. Otherwise, 
the value of εNB is 0.98. For the conversion of quantized and calibrated 
digital number (DN) values from the Landsat 8 OLI sensor system to 
spectral radiance, radiometric coefficients available in the metadata of 
the images and sensor characteristics information were used, as per Sil-
va et al. (2016). Thus, Equation 6 was applied to calculate the spectral 
radiance of the thermal band (Band 10).
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Where:
Lλ = spectral radiance of the sensor in watts (m2·sr·μm); 
ML = band 10 rescaling multiplier with a value of 3.3420 × 10⁻⁴; 
AL = band 10 rescaling additive factor with a value of 0.100; and 
Qcal = calibrated quantized value per pixel.

The processing of LST was carried out according to Equation 7, us-
ing emissivity, which represents surface behavior for thermal emission 
in the narrow band, spectral radiance, and calibration constants. 
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+ 1)
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K2 = calibration constant 2 with a value of 1321.08 for Landsat 8 OLI;  

ln = ?; 

εNB = emissivity; 

K1 = calibration constant 1 with a value of 774.89 for Landsat 8 OLI; and 

Lλ = spectral radiance of the sensor in watts (m2·sr·μm). 

 

Built-Up = NDBI – NDVI (8)  

 

 (8)

Land use and land cover
The study area’s land use and cover analysis was performed using 

products from the MapBiomas Project. The project consists of annual 
land cover maps and uses products from pixel-by-pixel classification of 
Landsat satellite images. The process is carried out with extensive ma-
chine learning algorithms through the Google Earth Engine platform 
(MapBiomas, 2022).



Remote sensing applied to biophysical parameters and land cover to identify urban heat islands in Recife (PE), Brazil

5
Revista Brasileira de Ciências Ambientais (RBCIAMB) | v.60 | e2107 | 2025

For processing, shapefiles of Recife municipality were loaded, fol-
lowed by Google Earth Engine script to download the maps. The Map-
Biomas Brazil region (collection 7.0), the study area mask polygon, and 
the application years were selected for analysis. Subsequently, the maps 
and area tables for land use and cover classes were exported for the 
processed years. The generated images were exported to QGIS version 
3.10 software to create georeferenced analysis maps.

Results and Discussions
Surface temperature is directly influenced by land use and land 

cover, as noted by Diem et  al. (2024). Green spaces are crucial for 
maintaining the balance between the Earth’s surface temperature and 
atmospheric parameters. Therefore, changes in land use and land cover 
classes can significantly influence the urban environment (Tariq et al., 
2022; Gemeda et al., 2024).

Figure 3 shows the land use and cover analysis in Recife for 2013, 
2019, and 2021. These years were selected for analysis due to the avail-
ability of cloud-free orbital images of the study area.

It was observed that there was an increase in the area correspond-
ing to the urban class (represented by the red color). In 2013, the area 
classified as urban was 117.51 km2; by 2019, this value increased to 
121.53 km2, and in 2021 it reached 122.74 km2 (Table 2).

The data demonstrate that the city is undergoing urban expansion 
and development, consequently increasing impermeable surfaces.  
Additionally, pasture areas showed a significant reduction, from 4.93 
km2 in 2013 to 0.29 km2 in 2019 and 0.19 km2 in 2021. The areas desig-
nated for the Sugarcane, Agriculture-Pasture Mosaic, and River, Lake, 
and Ocean classes also showed reductions over the eight years of study.

The land use and cover analysis showed an increase in areas with high-
er urban density (impermeable areas) and a reduction in vegetated areas 
(permeable areas). This reduction was also noted in the NDVI analysis, 
where a decrease in vegetated areas was observed, with classes ranging 
from 0.566 to 0.791 in some specific parts of the municipality, especial-
ly in the Várzea neighborhood (Southwest region of Recife) (Figure 4).  

Figure 3 – Land use and cover for 2013, 2019, and 2021. 
SIRGAS: Geodetic Reference System for the Americas; UTM: Universal Transverse Mercator.

Table 2 – Land use and cover classes for the study area in 2013, 2019, and 2021.

Class
Area (km2)

2013 2019 2021

Pasture 4.93 0.29 0.19

Sugarcane 1.25 1.08 1.01

Agriculture-Pasture Mosaic 38.03 35.25 34.14

Urban Area 117.51 121.53 122.74

River, Lake, and Ocean 8.19 7.46 6.94
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However, an increase in vegetated areas was noted in the Northern re-
gion, indicated by the NDVI.

Still focusing on the NDVI, the statistical data analysis showed that 
the index value decreased over the years: in 2013, the average NDVI 
was 0.424; in 2019, it was 0.409; and in 2021, it dropped to 0.385. As 
shown in Table 3, the maximum NDVI value recorded in the region 
in 2013 was 0.859, while in 2021, it was 0.851. These values indicate a 
reduction in the vegetative density of Recife’s land cover.

There was an increase in the urban sprawl, located in the South-
ern part of the city, demarcated by classes with values between 0.115 
and 0.341, identified by the orange coloration. According to Borges 
et al. (2022), the urban climate is determined by built density, which 
depends mainly on population and urban structure. The increase in 
urban density in Recife between 2013 and 2021 is evidenced by the 
reduction in NDVI values in the urban area. In 2021 (Figure 4), the 
urban sprawl appeared redder than in previous years, revealing the re-
duction in the index value in that region.

Vegetation is the main source of moisture. The conversion of vege-
tated areas to developed areas leads to a drastic reduction in humidity. 
When vegetated areas are converted into developed areas, the excess 
heat stored in developed areas and the absence of moisture signifi-
cantly increase the LST (Igun and Williams, 2018; Imran et al., 2019).  
Bagyaraj et al. (2023) emphasized that the type of land cover signifi-
cantly influences changes in the urban environment.

Table 3 – Statistical values of Normalized Difference Vegetation Index in 2013, 
2019, and 2021.

Year Maximum Minimum Average Standard deviation

2013 0.859 -1.240 0.424 0.259

2019 0.857 -0.589 0.409 0.254

2021 0.851 -0.517 0.385 0.294

Table 4 – Statistical values of Leaf Area Index in 2013 and 2019.

Year Maximum Minimum Average Standard deviation

2013 6.897 -0.487 0.477 0.477

2019 4.655 -0.405 0.478 0.531

Figure 4 – Normalized Difference Vegetation Index in Recife for 2013, 2019, 
and 2021. 
SIRGAS: Geodetic Reference System for the Americas; UTM: Universal Trans-
verse Mercator. 

Figure 5 – Leaf Area Index in Recife for 2013 and 2019. 
SIRGAS: Geodetic Reference System for the Americas; UTM: Universal Trans-
verse Mercator. 

The LAI and NDVI identified the presence of vegetated areas in 
the Northern part of Recife (Figure 5), characterized by higher index 
values (green coloration). As detailed in Table 4, the maximum LAI 
value in 2013 was 6.897, while in 2019, it was 4.655.

A reduction in the leaf area of the city was observed, with the 
LAI results corroborating those of the NDVI, showing a decrease in 
the index value in 2019 compared to 2013. The urban infrastructure 
areas were characterized by LAI values lower than 0.166, shown in 
orange shades.

The major urban expansion in Recife presented NDBI values be-
tween 0.033 and 0.204. In 2013, the NDBI showed lighter tones, char-
acterizing lower index values (Figure 6). In 2019 and 2021, the urban 
area displayed more intense colors due to higher NDBI values, indicat-
ing increased urban density over the years. It was noted that 69.44% 
of Recife’s area has a higher urban density, while 30.56% has a higher 
vegetative density.

The NDBI results were consistent with the NDVI and LAI values. 
Negative NDBI values (-0.309 to -0.480) were observed in areas with 
vegetation cover. Studies by Albuquerque et al. (2021) demonstrated 
that for NDBI, values above 0.400 represent urban areas, exposed im-
permeable soils, or regions with total vegetation removal. Values be-
tween 0.000 and 0.400 represent regions with some type of grass or 
tree vegetation when performing a comparative analysis of NDVI and 
NDBI, using CBERS-4 (China-Brazil Earth Resources Satellite) images 
in central Pará.
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 Figure 6 – Normalized Difference Built-Up Index in Recife for 2013, 2019, 
and 2021. 
SIRGAS: Geodetic Reference System for the Americas; UTM: Universal Trans-
verse Mercator. 

Figure 7 – Built-up in the study area for 2013, 2019, and 2021.
SIRGAS: Geodetic Reference System for the Americas; UTM: Universal Trans-
verse Mercator. 

Figure 8 – Land Surface Temperature in the study area for 2013 and 2019. 
SIRGAS: Geodetic Reference System for the Americas; UTM: Universal Trans-
verse Mercator. 

To improve the analysis of Recife’s urban growth, the Built-Up In-
dex was chosen to extract the built surface due to its precision in sepa-
rating urban areas and exposed soil, as per He et al. (2010).

Studies by Im et al. (2012) and Varshney (2013) demonstrated that 
the Built-Up Index can separate urban surfaces and provide methods to 
improve the identification of urban growth. The Built-Up Index’s appli-
cation allows the evaluation of the densification of built-up areas and 
more accurately defines the boundaries between rural and urban areas.

The Built-Up Index showed values of -0.127 for 2013 in the urban 
infrastructure area. By 2019, an increase in the index (between -0.127 
and 0.247) was observed, characterized by a more intense brown color-
ation. In 2021, the Built-Up Index reached 0.247, indicating an increase 
in urban density in the city (Figure 7).

The increase in built-up areas and the reduction in vegetated areas, as 
evidenced by the analyzed index maps, are key factors contributing to the 
rise in city temperatures and the occurrence of the heat island phenomenon.  

According to Borges et al. (2022), temperatures in urban sprawl are often high-
er than in surrounding rural areas, as cities consist of a mosaic of areas with 
higher and lower temperatures, depending on variations in urban land cover.

Gamarra et  al. (2014) analyzed surface temperature estimates to 
identify the urban sprawl of Londrina in Paraná, Brazil, and affirmed 
that the aforementioned parameter provides support for the correct 
identification of urban sprawl practically based on physical consider-
ations, corroborating this study.

Mendes et al. (2022) stated that areas with higher densities of tree 
vegetation (coastal massifs) show lower surface temperatures than 
densely built-up areas. In 2013, LST values were lower than those ob-
served in 2019. In the region with the highest percentage of urbaniza-
tion, the recorded LST was 29.35°C for 2013 and 31.95°C for 2019. This 
difference of 2.60°C, as illustrated in Figure 8, aligns with the climato-
logical data presented in Figure 2, from July to October. The images 
analyzed in this study were limited to the available dates.

In the Northern part of the city, where a greater presence of veg-
etation cover was noticed, surface temperatures ranged from 21.65°C 
to 24.25°C in 2013 and from 24.25°C to 26.75°C in 2019. It was found 
that in areas with higher urban density, the encountered surface tem-
perature was up to 5.10°C higher than in vegetated areas in 2013, and 
this value increased to 5.20°C in 2019. The LST analysis highlighted a 
temperature increase across the entire city region. However, the pres-
ence of vegetation is a determining factor for improving the urban mi-
croclimate.

Figure 9 details the variation in surface temperature in vegetat-
ed areas and urban areas in 2013 and 2019. Following the georefer-
enced maps, areas with a higher percentage of vegetation showed 
lower surface temperatures than in more urbanized areas, where 
temperatures increased.

The analyzed biophysical parameters highlighted the reduction in 
vegetated areas and the increase in built-up areas over the studied years.  
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This factor contributed to the increase in surface temperature in 2019 
compared to 2013, as shown in the studied profile, thus raising the risk 
of the occurrence of the heat island phenomenon.

Conclusions
The applicability of biophysical parameters, land use and land 

cover classification, and LST has proven to be highly effective for un-
derstanding and studying the heat island phenomenon in large urban 
centers. The 2021 data showed that 69.44% of the city of Recife’s area 
has higher urban density.

The land use and cover analysis showed an increase in areas 
with higher urban density (impermeable areas) and a reduction in 
vegetated areas (permeable areas), as recorded by MapBiomas data. 

Figure 9 – Land Surface Temperature profile for the years 2013 and 2019. 
SIRGAS: Geodetic Reference System for the Americas; UTM: Universal Trans-
verse Mercator. 

This reduction is also noted in the NDVI analysis, where the index 
value decreased over the years: in 2013, the average NDVI value was 
0.424; in 2019, it was 0.409; and in 2021, it was 0.385. The LAI and 
NDVI demonstrate the presence of vegetated areas in the Northern 
part of Recife.

The major urban expansion of the city showed NDBI values be-
tween 0.033 and 0.204, identifying the urban area. Higher NDBI values 
were recorded in 2019 and 2021, indicating an increase in urban den-
sity over the years, a result also evidenced by applying of the Built-Up 
Index. It was found that in areas with higher urban density, surface 
temperatures were up to 5.20°C higher than in vegetated areas, in both 
the 2013 and 2019 images. The results, therefore, demonstrate that 
there has been an increase in built-up areas in the city. The observed 
temperature differentiation is due to the different months of the imag-
es, requiring further temporal investigation.
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