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R E S U M O
Os danos causados pelos florestais têm incêndios causam grandes 
impactos todos os anos, não só no meio ambiente, mas também 
na economia e na saúde pública. O presente trabalho objetivou 
mapear o risco de incêndio nas diferentes áreas do município de Rio 
Verde, em Goiás, Brasil.  Vários fatores que influenciam a ocorrência 
de incêndios florestais como a orientação do relevo, declividade, 
densidade populacional, proximidade das residências, rede de estradas 
e a cobertura e uso do solo, foram considerados na análise. Os pesos 
apropriados das variáveis foram designados usando o método de 
processo hierárquico analítico. O índice de risco de incêndio foi divido 
em cinco classes: água, grau baixo, moderado, alto e muito alto. 
A classe 4 (risco alto) foi a mais frequente registrada dentro da área 
de estudo, seguida das classes 3 (risco moderado) e 2 (risco baixo). 
Posteriormente, os focos de calor registrados por sensoriamento 
remoto foram relacionados aos índices de risco de incêndio e verificado 
o enquadramento nas classes. No geral, 16,36% dos focos de calor 
foram considerados de risco baixo (classe 2), enquanto 36,29% foram 
classificados de risco moderado (classe 3) e 46,72% como risco alto 
(classe 4). Essas constatações indicam que o índice de risco de incêndio 
fornece um parâmetro adequado e eficaz para a avaliação espacial 
da distribuição dos eventos de queimadas ou incêndios florestais no 
município de Rio Verde.

Palavras-chave: queimadas; modelagem de risco; vegetação; 
sensoriamento remoto.

A B S T R A C T
The damage caused by wildfires has major impacts each year, not 
only on the environment but also on the economy and public health. 
The present study aimed at mapping the fire risk in the different areas 
of the municipality of Rio Verde, in the Central Brazilian state of Goiás. 
A number of factors that influence the occurrence of wildfires were 
considered in this analysis, including the orientation of the relief, the 
slope, population density, proximity of homes, the road network, 
and land cover and use. The analytical hierarchy process was used to 
determine the appropriate weights for each of the variables. The fire 
risk index was divided into five classes: water, low, moderate, high, and 
very high risks. Class 4 (high risk) was the most frequently recorded 
within the study area, followed by classes 3 (moderate risk) and 2 (low 
risk). Subsequently, the heat spots recorded by remote sensing were 
related to fire risk indices, and the framing in the classes was verified. 
Overall, 16.36% of the heat spots were considered low risk (class 2), 
while 36.29% were classified as moderate risk (class 3), and 46.72% as 
high risk (class 4). These findings indicate that the fire risk index provides 
an adequate and effective parameter for the spatial assessment of 
the distribution of fire events (controlled burns or wildfires) in the 
municipality of Rio Verde.
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Introduction
Wildfires result in the uncontrolled burning of biomass, which 

generates intense heat, and can be extremely harmful to local biodi-
versity, agricultural operations, and hydrological and carbon cycles 
(Tomar et al., 2021). These impacts can reduce the capacity of a for-
est to support life, and the ability of the soil to assimilate new species 
(Razavi-Termeh et al., 2020). Repeated wildfires over different cycles of 
drought can induce definitive loss of the genetic heritage of a region, 
resulting in profound changes in its landscape (Ghorbanzadeh et al., 
2019a; Vallejo-Villalta et al., 2019).

Another type of impact caused by wildfires is their capacity to alter 
the local climate, often negatively, and contribute to regional processes 
or even global climate change, depending on their magnitude (Singh, 
2022). Wildfires play a significant role in global warming, primarily 
through the release of greenhouse gases into the atmosphere, particu-
larly carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) 
(Pereira et al., 2021). Once liberated from the biomass, these gases con-
tribute to the retention of heat and increase in the temperature of the 
lower layer of the atmosphere (Mansoor et al., 2022).

A systematic understanding of the consequences of wildfires for 
the environment and local economies is fundamental to establishing 
adequate measures of fire prevention, control, and combat (Mohajane 
et al., 2021). Vettorazzi and Ferraz (1998) developed an approach for 
mapping fire risk based on a scale of incidence, derived from the fac-
tors that determine the occurrence of wildfires. This zoning can be de-
scribed as the representation of the target region, which is subdivided 
into specific areas according to the relative importance of the factors 
and their overall potential for the occurrence and propagation of wild-
fires (Argañaraz et al., 2018). This mapping permits the visualization of 
the spatial distribution of fire risk within the target region, which also 
supports the implementation of adequate measures of control and pre-
vention that are proportional to the risk (Ghorbanzadeh et al., 2019a).

The mapping of fire risk is based on the assumption that several 
different factors contribute to the probability of ignition of a wildfire 
and other factors that are related to the propagation of the fire (Valle-
jo-Villalta et al., 2019; Pourghasemi et al., 2020). These factors are of 
three types—biological (land cover and use), physical (orientation of 
the relief and its slope), and socioeconomic, that is, population densi-
ty and the proximity of homes, and the road network (Juvanhol et al., 
2015; Tomar et al., 2021). 

The Cerrado savanna of Central Brazil is one of the country’s bi-
omes that is most affected by fire, with approximately 63 thousand heat 
spots detected by remote sensing in 2020 alone (INPE, 2021). The state 
of Goiás was responsible for 5,730 of these heat spots, that is, 9% of the 
total, the fourth highest number recorded in the 12 Brazilian states in 
which the Cerrado is distributed, only behind three states in which the 
burning of forest for the installation of pasture is particularly intense. 
In Goiás, the municipality of Rio Verde had the third-highest number 
of heat spots, with 201 cases recorded in 2020 alone (INPE, 2021). 

Rio Verde is known as the capital of Goiás’ agribusiness, and is the 
state’s principal producer of grains, with an output of some 3.76 mil-
lion tons in 2020, representing 14% of the total production of the state 
(IBGE, 2020). In regions such as Rio Verde, accurate information on 
fire risk is of paramount importance, given the potential damage that 
wildfires can cause to the municipality’s agribusiness infrastructure 
(Mohammad et al., 2023).

The mapping of fire risk in the municipality will provide valu-
able insights for the implementation of adequate decision-making for 
strategic territorial planning (Novo et  al., 2020; Lamat et  al., 2021). 
This  information can be used by public organs, such as fire depart-
ments, the municipal government, or private entities involved in the 
management of agribusiness operations, for example (Mohajane et al., 
2021). This would allow the authorities to implement the most effec-
tive possible management of the resources available to combat wildfires 
(Pradeep et al., 2022), as well as support the development of strategies 
for the allocation of teams and resources, continuous monitoring, and 
campaigns of public awareness that educate local communities on the 
importance of fire prevention. Together, these measures should guar-
antee a rapid response, enabling the mitigation of adverse effects on the 
climate, agribusiness, and biodiversity (Parajuli et al., 2020).

The principal approaches applied to the mapping of fire risk in-
clude the analytical hierarchy process (AHP), fuzzy AHP (F-AHP), 
and logistic regression (Nikhil et al., 2021; Pradeep et al., 2022; Sinha 
et al., 2023). The AHP consists of a multi-criterion decisionmaking 
procedure that organizes the risk factors in a hierarchical structure, 
allowing for systematic comparisons (Lamat et  al., 2021). This ap-
proach is highly adaptable to different regions and specific contexts 
and permits the comparison of different scenarios of risk (Nikhil 
et al., 2021).

The F-AHP, in turn, permits more precise mapping adapted to spe-
cific local features and the intrinsic uncertainties of wildfires (Sakel-
lariou et al., 2020). Its purpose is often to mitigate the low flexibility 
of traditional AHP, especially when there is uncertainty in the weights 
assigned to different risk criteria (Tabibian, 2022). In particular, the 
F-AHP is highly sensitive to minor shifts in its assessments, which may 
lead to unsatisfactory results (Feizizadeh et al., 2023).

The logistic regression approach is also an effective tool for the 
mapping of fire risk. It permits the prediction of probabilities based 
on an ample range of variables, with considerable flexibility and easi-
ly-interpreted results (Milanović et al., 2020). However, this approach 
assumes that a linear relationship exists between the variables, which is 
not often the case when considering the factors that determine the risk 
of wildfires (Zhang et al., 2022).

In this context, the present study assessed the most relevant factors 
necessary for the mapping of the fire risk within Rio Verde. An index 
was developed for the study area based on the AHP approach, given its 
adaptability, with the distribution of this index being compared with 
the heat spot data compiled by the Moderate Resolution Imaging Spec-
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troradiometer (MODIS) sensor of the AQUA and TERRA satellites 
between 2005 and 2020.

Methods

Study area
The study area is the municipality of Rio Verde in the Brazilian 

state of Goiás (Figure 1). This municipality is located in Southwestern 
Goiás, approximately 231 Southwest of the state capital, Goiânia. The 
centroid of the urban zone of the municipality is located at 17º43’53” S, 
50º35’18” W (IBGE, 2022).

The study area covers 8,379.661 km2. The predominant vegetation 
type in the region is Cerradão woodland, which is a forest formation 
with sclerophyllous and xeromorphic characteristics, with tree heights 
of up to 15 m (Santos et al., 2024).

Acquisition of the orbital, spatial, and demographic data
The data on the orientation and slope of the relief were extracted 

from a digital elevation model (DEM), obtained from the ALOS satel-
lite. These data were acquired from the Alaska Satellite Facility (ASF) 
platform, which is managed by the National Aeronautics and Space 
Administration (NASA). This platform generates products correct-
ed geometrically and radiometrically by the synthetic aperture radar 

(SAR), with the data being presented in the GeoTIFF format (Polidori, 
2024).

Data on population density were obtained based on the census pa-
rameters established by the Brazilian Institute of Geography and Statis-
tics (IBGE, 2010), which are available in shapefile format. The number 
of individuals per private residence or the resident population in pri-
vate residences used for parameter analysis, was obtained in spread-
sheet format (IBGE, 2020).

Factors that influence the risk of wildfires
Three types of factors were selected for the assessment of fire 

risk within the study area, considering the region’s unique features. 
These were biological (land cover and use), physical (orientation of the 
relief and slope of the land), and socioeconomic factors (population 
density and proximity of homes, and the road network).

Biological factors — land use and cover
The condition classification model was carried out using sam-

ples of areas that had characteristics within the rules related to speci-
fied soil cover. One class is native vegetation (VEG), a category that 
includes natural arboreal vegetation at different stages of growth, i.e., 
secondary and climax. The second class is farmland (FAR), which com-
prises plantations of annual and perennial crops, and cattle pasture.  

Figure 1 – Location of the study area in the municipality of Rio Verde, in the state of Goiás, in Central Brazil.
Source: Aires and Angelini (2022).
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The third, exposed soil (EXS), consists of farmland that has been plowed 
or otherwise prepared for planting, as well as built infrastructure (houses, 
buildings), which has a similar profile of surface reflectance. The fourth 
class is water (WAT), which covers water bodies and associated areas. 

The next step was to identify control areas that correspond to these 
classes. These reference areas were selected based on the visual interpre-
tation of specific areas using the Google Earth tool, for which images ob-
tained between June and September 2020, were adjusted. This procedure 
was used to determine the limits (maximum and minimum) of the dif-
ferent parameters used to classify the different land use classes (Figure 2). 
The classes were validated based on a confusion matrix, which assessed 
the quality of the images’ classification based on a comparison with the 
reference data (Fielding and Bell, 1997; Tremea et al., 2020).

The VEG areas were then reclassified with a coefficient of 1, while 
FAR was reclassified with a coefficient of 5, and EXS, a coefficient of 6. 
As they pose no fire risk, WAT areas were reclassified as 0.

Physical factors — slope
Lands that are relatively steeply sloping tend to have a greater po-

tential risk of wildfire than more gently sloping areas (Vallejo-Villalta 
et al., 2019). The slope of the land was evaluated through DEM images 
obtained by the ALOS satellite using the PALSAR microwave sensor, 

which were analyzed using geoprocessing tools (the slope algorithm) 
to verify the slope of the land across the different areas of the study 
municipality (Liao et al., 2020; JAXA, 2022). The slope algorithm can 
be used to calculate the slope of a terrain based on the adjustment rate 
of elevation from one DEM cell to the next (Shi et al., 2019).

For the assessment of fire risk, the slope of the different areas was 
allocated to one of five categories (Figure 3): i. gently sloping (0–5º), 
with a reclassification coefficient=1; ii. sloping (5–15º), reclassification 
coefficient=2; iii. substantial sloping (15–25º), reclassification coeffi-
cient=3; iv. steep (25–35º), reclassification coefficient=5; and v. very 
steep (>35º), reclassification coefficient=7 (Santos et  al., 2015; Valle-
jo-Villalta et al., 2019).

Physical factors — orientation of the relief
The orientation of the relief assessment was based on the DEM 

images obtained by the ALOS satellite using the PALSAR microwave 
sensor, which were analyzed using remote sensing tools (the hillshare 
algorithm) to determine the shading conditions of each target area 
(Liao et al., 2020; JAXA, 2022). The differences in the altitude between 
triangulable points can be exploited to determine the shading of an 
area relative to solar radiation, based on the inclination of the terrain 
(Guth and Kane, 2021).

Figure 2 – Classification of land use and cover in the municipality of Rio Verde, in Goiás, Central Brazil, in 2020, and the classification of their areas of 
influence within the  municipality. 
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Figure 3 – Slope of the land and classification of its areas of influence within the municipality of Rio Verde, in Goiás, Central Brazil.

The orientation of the relief was assigned to one of six classes of 
fire risk (Figure 4). These six classes are: i. flat land; ii. fully shaded 
(112.5–247.5º), with a reclassification coefficient=1; iii. semi-shad-
ed (67.5–112.5º), reclassification coefficient=2; iv. semi-illuminated 
(22.5–67.5º), reclassification coefficient=3; v. illuminated (247.5–
337.5º), reclassification coefficient=5; and vi. fully illuminated (fac-
ing North: 337.5–22.5º), reclassification coefficient=7 (Santos, 2015; 
Ghorbanzadeh et al., 2019a).

Socioeconomic factors — proximity of roads
For the mapping of fire risk, the roads in the study area were di-

vided into two categories: highways and rural roads. The highways are 
asphalted with at least two lanes and two-way traffic. Four highways 
were identified in Rio Verde, the BR-60 and BR-452 federal highways, 
and the GO-333 and GO-174 state highways.

The rural roads, in turn, are all unpaved, subdivided into principal, 
secondary, and access roads, and internal (farm) tracks. In this classi-
fication, the principal roads are wellconstructed thoroughfares with a 
lane width of at least 5 m. The secondary roads are almost invariably 
offshoots of the principal roads and responsible for the division of the 
landscape. The access roads, in turn, are mostly linked to the secondary 
roads and are responsible for the access to the most internal sections 

of the landscape, while the internal tracks link the road system to the 
infrastructure of the local settlements, farms, and smallholdings.

For the assessment of fire risk, zones of influence of roads were 
established based on the distance from the target area to the different 
types of roads. Wherever these zones overlapped, due to the proximi-
ty of different road classes, the zone with the highest risk was consid-
ered for analysis. This classification (Figure 5) was based on a scale of 
500–1500 m, with proximity being defined relative to traffic volume 
(and the number of persons) expected for each type of thoroughfare. 
In this case, proximity to a highway was defined as a distance of at least 
1500 m, and to a principal road, a distance of at least 1000 m (Chuvieco 
and Congalton, 1989; Pew and Larsen, 2001; Pourghasemi et al., 2020).

Proximity to a secondary road was defined as a distance of at least 
750 m, based on the assumption that these roads tend to have less traf-
fic and fewer people visiting the area, and thus, a lower risk of fire ig-
nition (Juvanhol et  al., 2015). Likewise, proximity to an access road 
was set at 500 m. The Euclidian distance was calculated based on the 
characteristics of the polyline of the road, delimited by the Pythagoras 
Theorem, Hab (Xa, Ya) and (Xb, Yb), for the whole extension of the 
road (Cavalcante et al., 2019). All areas within a given zone were at-
tributed a reclassification coefficient of 7, while areas not within any of 
these zones were assigned a coefficient of zero (Table 1).
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Figure 4 – Orientation of relief and classification of its areas of influence within the municipality of Rio Verde, in Goiás, Central Brazil.

Figure 5 – Distribution of roads and classification of their areas of influence within the municipality of Rio Verde, in Goiás, Central Brazil.
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Table 1 – The different classes of each fire risk factor, their respective levels 
of fire risk, and the coefficients attributed to each category.

Factor/class Fire risk Coefficient

Land use and cover

Plowed farmland Very high 6

Farmland and pasture High 5

Natural vegetation Low 1

Bodies of water Very Low 0

Population density

>30 inhabitants per hectare Very high 7

10–30 inhabitants per hectare High 5

1–10 inhabitants per hectare Moderate 3

0–1 inhabitant per hectare Low 1

Proximity to residences

<500 m Very high 7

500–1000 m High 5

1000–1500 m Moderate 3

>1500 m Low 2

Slope

Very steep (>35º) Very high 7

Steep (25–35º) High 5

Substantial sloping (15–25º) Moderate 3

Sloping (5–15º) Low 2

Gently sloping (0–5º) Low 1

Orientation of the relief

Full sunlight (337.5–22.5º) Very high 7

Illuminated (247.5–337.5º) High 5

Semi-illuminated (22.5–67.5º) Moderate 3

Semi-shaded (67.5–112.5º) Low 2

Fully shaded (112.5–247.5º) Low 1

Proximity of roads

Highways (1500 m) Very high 7

Principal roads (1000 m) Very high 7

Secondary roads (750 m) Very high 7

Access roads (500 m) Very high 7

No roads Null 0

Source: adapted from Juvanhol et al. (2015).

Socioeconomic factors – population density
The number of inhabitants of a given locality is a fundamental 

determinant of the local fire risk, given that population density has a 
direct effect on the probability of fire ignitions through human activ-
ities. Population density (the number of residents per unit area) was 
calculated using Equation 1 (Deichmann, 1996). 

� (1)

Where: 
Di = population density of 𝑖 per unit area;
Pi = total population of 𝑖; and
Ai = area of 𝑖 in the same unit of area (as defined by IBGE for the 2010 
Census).

The value of Pi corresponds to the number of individuals per pri-
vate residence or the resident population in private residences, as re-
corded in the most recent census. To represent the spatial association 
between the local population density and the fire risk, the population 
density map was classified into four categories (Figure 6): i. 0–1 inhabi-
tant per hectare (coefficient=1); ii. 1–10 inhabitants per hectare (coeffi-
cient=3); iii. 10–30 inhabitants per hectare (coefficient=5); and iv. >30 
inhabitants per hectare (coefficient=7).

Socioeconomic factors — proximity of homes
Mapping the distribution of homes within a study area is funda-

mentally important for classifying fire risk zones (Milanović et  al., 
2020). Given this, the distribution of homes within Rio Verde was 
determined using geoprocessing tools, with distances relative to each 
target area being used to differentiate the risk of each zone. Wherev-
er these zones overlapped, due to the proximity of homes, the zone 
with the highest risk was considered for analysis. The four classes were 
created based on the Euclidian distances (Figure 7): i. <500 m (coef-
ficient=7); ii. 500–1000 m (coefficient=5); iii. 1000–1500 m (coeffi-
cient=3); and iv. >1500 m (coefficient=2).

The fire risk index model
Once all relevant variables had been determined, it was possible 

to map the fire risk within the municipality of Rio Verde. To apply 
the model, thematic maps were labeled according to the character-
istics of each variable. The factors with greater potential for the oc-
currence of wildfires were given a higher weighting in the model. 
The diferente classes of each factor were assigned a degree of fire 
risk, ranging from very low to very high, based on their sensitivity 
to wildfire events (Table 1). In Table 1, the factors are ranked with 
the greatest coefficient attributed to the factors that are most im-
portant for the fire risk index, with the respective coefficients of 
the different classes, allocated according to their sensitivity to the 
occurrence of fires.

Weighting the indices
In the next stage of the analysis, the variables were assigned appro-

priate weights using the AHP approach. This method was proposed 
by Saaty (1977) and involves a multi-criterion analysis in which the 
assessments of the individual criteria are defined through a synthe-
sis of the decision-making agents (Saranya and Saravanan, 2020). 
Following this concept, a global measure was compiled for each alter-
native, with its classification being based on its order of importance.  
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Figure 6 – Distribution of population density and classification of its areas of influence within the municipality of Rio Verde, in Goiás, Central Brazil.

Figure 7 – Distribution of homes and classification of their areas of influence within the municipality of Rio Verde, in Goiás, Central Brazil.
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The degree of importance was determined through empirical obser-
vation of the intrinsic characteristics of the municipality and the data 
available in the literature, which were used to compile the decision ma-
trix. The weights were determined on a scale of assessment that varied 
from 1 to 9; where 1 represents criteria with the same level of impor-
tance and 9, an absolute level of importance of one criterion over the 
other. In general, if the importance of one criterion of 𝑋𝑖 in relation to 
𝑋𝑗 is 𝑎𝑖𝑗, that of 𝑋𝑗 in relation to 𝑋𝑖 will be 1/𝑎𝑖𝑗. 

The relative importance of each factor compared with all the oth-
ers was estimated based on a comparison matrix, which allowed the 
decision-making procedure to define a set of relationships among the 
factors individually. The consistency ratio (CR) was then calculated 
to evaluate the performance of the weights defined by this procedure. 
In  the assessment scale, values of CR lower than 0.1 indicate a good 
level of consistency for the weights of each criterion. Whenever this ra-
tio indicated a high level of inconsistency in the comparison of the pair 
of weights, it was necessary to reevaluate the relationship. The matrix 
generated here is ordered (n × m) according to the factors analyzed, 
and is reciprocal and positive, with the principal diagonal equal to 1. 
The application of the AHP was based on a series of steps, applied to 
each element of the matrix, for which the following condition must be 
satisfied (Equation 2):

� (2)

Where: 
a = elements of the matrix; 
i = line i; and
j = column j.

The comparisons had the following prerequisite (Equation 3):

� (3)

Where: 
Pi = degree of importance of the effect of factor of line i on the factor 
of column j; and 
Pj = degree of importance of the effect of factor of line j on the factor 
of column i.

After the decision-making process, the comparison matrix A was 
compiled as follows (Equation 4):

� (4)

The weight of each factor can be determined based on matrix A 
(Equation 4). For this, the elements of column j are added together, as 
follows (Equation 5):

� (5)

Column j was then normalized (Equation 6), based on the ratio 
between Equations 3 and 5:

� (6)

...with the weight of line i (Wi) being calculated by the arithmetic mean 
of its terms (Equation 7):

� (7)

The weights were then obtained, beginning with the verification 
of the consistency of the assessments based on the highest eigenvalue 
of the comparison matrix. The eigenvalue is calculated by the product 
of the normalized values (Equation 6) with their respective weights 
(Equation 7), with the values being summed (Equation 8):

� (8)

Where:
λₘₐₓ = maximum eigenvalue.

The consistency index (CI) was calculated using Equation 9, fol-
lowing Saaty (1980):

� (9)

Where: 
CI = consistency index.

The final step was the calculation of the CR (Equation 10), which 
is the pairwise CI of the comparison matrix (Saaty, 1980). CR values 
below 0.1 indicate a lack of inconsistency in the values attributed by 
the assessment, whereas, once again, values of over 0.1 require a new 
evaluation.

� (10)

Where:
RI = random index.

The RI is a value proposed by Saaty (2005), which varies according 
to the number of factors evaluated in the construction of the matrix 
(Table 2).
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The multi-criterion AHP was based on the weighted linear combi-
nation model. The values obtained by this approach are derived from 
the standardization of the factors on a common scale, with their re-
spective weights, which are combined in sequence through a weighted 
mean (Pimenta et al., 2019). The weights obtained by the AHP method 
permit new values to be attributed to their respective classes (Table 3), 
and whenever necessary, the weights are modified, before the values 
are exported to thematic maps (Lamat et al., 2021). In the final step, 
Equation 11, which was proposed by Santos (2015), was inserted using 
geographic information system (GIS) data processing tools to extract 
the fire risk indices for the municipality of Rio Verde.

FRI=PXR.PXRpi+PXH.PXHpi+LUC.LUCpi+ 
POD.PODpi+ORI.ORIpi+SLO.SLOpi� (11)

Where:
FRI = fire risk indices; and
pi = the statistical weight calculated for each factor.

Results and Discussion

Mapping of the factors
The mapping of land use in the study area in 2020 (Figure 2) re-

vealed a predominance of active farmland (coefficient 5) and exposed 
soil (coefficient 6). The slope of the land was predominantly discreet, 
mostly below 15%, being represented by coefficients 1 and 2 (Figure 3). 
Similarly, the orientation of the relief was predominantly assigned to 
the semi-shaded and fully shaded classes, with coefficients of 1 and 2 
(Figure 4). 

Table 2 – Values of the random index proposed by Saaty (2005) for matrices 
of different sizes.

Number of factors 1 2 3 4 5 6 7 8

Random index 0.00 0.00 0.58 0.89 1.12 1.32 1.41 1.41

Table 3 – Number of classes considered for each factor analyzed in this 
stud, used to determine the fire risk index.

Factor Code Number of classes

Land use and cover LUC k=4

Population density POD l=4

Proximity of homes PXH j=2

Slope SLO n=5

Orientation of the relief ORI m=6

Proximity of roads PXR i=4

Source: the authors (2022).

In terms of proximity of roads, highways clearly have a major influ-
ence, given that they affect areas within a radius of 1500 m (Figure  5). 
The population density was concentrated within the urban zone of the mu-
nicipality, as well as a few other isolated points, primarily in the Southwest 
of the municipality, where coefficients 5 and 7 predominated (Figure 6).

Determination of the weights of the study factors
It was possible to determine the weight of each factor included in 

the comparison matrix (Table 4). The CR value recorded herein was 
0.0190, which is well below the threshold of 0.100 established by Saaty 
(1980). Following the substitution of the weights, it was possible to de-
fine Equation 12, which was used to calculate the fire risk index.

FRI=0.3035.PXR+0.3035.PXH+0.1903.LUC+ 
0.1087.POD+0.0519.ORI+0.0421.SLO� (12)

Mapping the fire risk of the study area
Based on the integrated analysis of all the different factors that 

make up the spatial variables considered in this study in terms of the 
probability of the ignition and perpetuation of a wildfire, it was possi-
ble to map the fire risk index for the municipality of Rio Verde in the 
Brazilian state of Goiás (Figure 8). The fire risk index was determined 
through Equation 12 in the GIS environment. For mapping, the index 
was divided into five classes: i. water; ii. low risk; iii. moderate risk; iv. 
high risk; and v. very high risk.

The areas associated with bodies of water in Rio Verde cov-
ered 3,489.57 hectares, which is equivalent to 0.410% of the total 
area of the state. This type of land cover has a negligible risk of ig-
nition, given the minimal capacity of this environment for com-
bustion (Pourghasemi et  al., 2020). The low-risk areas (class 2) cov-
ered 173,428.62 hectares, which is equivalent to 20.697% of the 
total area of the municipality. These low-risk areas tend not to be 
located within the zone of influence of any of the factors with rela-
tively high weights for the occurrence of fires, such PXH and PXR.  

Factor SLO ORI POD LUC PXH PXR Weight

SLO 1 1 1/3 1/5 1/7 1/7 0.0421

ORI 1 1 1/3 1/3 1/5 1/5 0.0519

POD 3 3 1 1/3 1/3 1/3 0.1087

LUC 5 3 3 1 1/2 1/2 0.1903

PXH 7 5 3 2 1 1 0.3035

PXR 7 5 3 2 1 1 0.3035

CR 0.0190

Table 4 – Pairwise comparison matrix and the respective weights of the 
factors that influence the fire risk of the study area.

LUC: land use and cover; POD: population density; PXH: proximity to homes; 
SLO: slope; ORI: orientation of the relief; PXR: proximity of roads; CR: consis-
tency ratio.
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One other factor that had a major influence here was LUC, which were pri-
marily VEG and, principally, FAR—categories that have a lower fire risk.

Areas of moderate risk (class 3) occupied 313,502.09 hectares, the 
equivalent to 41.332% of the municipality area. These areas were influ-
enced primarily by the distribution of homes within the municipality. 
Given the increased human presence in these areas, there is a greater 
probability of a wildfire ignition (Buschinelli and Costa, 2020; Oliveira 
et al., 2020). Another factor that had a strong influence on this config-
uration was the LUC in the areas surrounding these homes, which were 
typically occupied by agribusiness, in particular, EXS. The biomass of 
many cash crops has a high risk of combustion, with a marked po-
tential for the generation of extensive wildfires (Razavi-Termeh et al., 
2020). Moro and Oliveira (2023) georeferenced the data on wildfires 
from case reports registered in the South of the Brazilian state of Es-
pírito Santo, and estimated that more than 48% of the events were re-
corded in urban areas, which further reinforces the apparent human 
influence on the occurrence of controlled burns.

Physical factors, that is, SLO and ORI of the terrain, and their 
distribution within the municipality, are also important here, being 
the classes that most influence the potential for wildfires, distribut-
ed primarily in the Central-Southern portion of the municipality 
(Vallejo-Villalta et al., 2019; Novo et al., 2020). This is where the largest 

proportion of the areas classified as moderate and high (class 4) risk for 
the occurrence and propagation of wildfires were located.

The high-risk areas (class 4) covered a total of 346,339.59 hectares, 
which is 41.332% of the total area of the municipality. These areas are 
influenced primarily by the distribution of roads within the municipal-
ity, which generate zones of constant transit, with the flux of persons in 
the area increasing the probability of the ignition of a fire (Ghorban-
zadeh et al., 2019a; Mohajane et al., 2021). Once again, the LUC has a 
major influence on this configuration, given that the areas neighbor-
ing roads tend to be occupied by agribusiness, in particular by EXS. 
Areas of very high risk (class 5) were negligible; however, accounting 
for only 0.001% of the total area of the municipality (Table 5).

Comparative analysis of the heat spots detected in the 
municipality of Rio Verde over sixteen years between 2005 
and 2020

The fire risk map (Figure 8) was systematically compared with 
the distribution of heat sources detected in Rio Verde, to determine 
the overlap between the distribution of the different fire risk zones and 
the heat sources detected by the MODIS satellite sensor AQUA and 
TERRA from 2005 to 2020. In broad terms, there was a progressive in-
crease in the proportion of heat spots with increasing fire risk (Table 6). 

Figure 8 – Distribution of fire risk zones within the municipality of Rio Verde, Goiás, Central Brazil.
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Table 5 – Distribution of the different classes of the fire risk index in the 
municipality of Rio Verde, Goiás, Brazil, based on the analysis conducted 
in the present study.

Risk class Fire risk index Degree of risk Area in hectares  
(% of the study area)

1 – (water) Very low 3489.57 (0.410)

2 0–2 Low 173,428.62 (20.697)

3 2–4 Moderate 313,502.09 (37.413)

4 4–6 High 346,339.59 (41.332)

5 >6 Very high 11.85 (0.001)

Risk class Fire Risk Index Degree of risk Number (%) of heat 
spots

1 – Very low 27 (0.645)

2 0–2 Low 684 (16.363)

3 2–4 Moderate 1517 (36.291)

4 4–6 High 1953 (46.722)

5 >6 Very high 0 (0.000)

Total 4180 (100.000)

Table 6 – Distribution of the heat spots in Rio Verde recorded by the 
MODIS satellite sensor AQUA and TERRA, from 2005 to 2020, among 
the different zones of fire risk established by the analysis of different risk 
factors identified in the present study.

This comparative analysis showed that only ten heat spots (0.645% 
of the total) were detected in the lowest risk areas, i.e., bodies of water 
(class 1). These areas have a negligible risk of ignition, given their ex-
tremely low capacity for combustion, as reflected in the small number 
of heat spots detected (Pourghasemi et al., 2020).

A total of 684 heat spots were detected within the low-risk areas 
(class 2), which is equivalent to 16.363% of the municipality. These ar-
eas have low population density, relatively few roads, more level relief, 
and land use and cover with reduced capacity for the production of 
biomass as fuel, all of which reduce the chances of combustion (Ghor-
banzadeh et al., 2019b; Vallejo-Villalta et al., 2019; Novo et al., 2020; 
Scholtz et al., 2020).

The areas of moderate risk (class 3) had 1,517 heat spots, just over 
a third (36.291%) of the total. In this case, the proximity of homes was 
an important factor, given that the local concentration of residences 
maximizes the chances of human contact in the area (Oliveira et al., 
2020). The largest number of heat spots, that was 1,953 (46.722% of 
the total), was detected within the high-risk (class 4) areas that are 
influenced primarily by factors of higher weights, such as PXH and 
PXR, which are related directly to human contact, amplifying the 
number of wildfires or controlled burns (Ghorbanzadeh et al., 2019b; 
Vallejo-Villalta et al., 2019). No heat spots were detected in any of the 
very high-risk (class 5) areas, probably because of their greatly re-
duced extent (Table 5).

Conclusions
The results of the present study demonstrated clearly that the com-

pilation of the fire risk index was an adequate and effective approach 
for the assessment of wildfire distribution in Rio Verde. Overall, the 
areas of high risk covered the largest part of the municipality.

The moderate risk zones covered the second largest area in the 
municipality, and were influenced primarily by the presence of homes, 
which tends to maximize the chances of human contact. The low-risk 
zones made up only the third largest area of the municipality.
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