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A B S T R A C T
The concern for environmental sustainability and the rational 
use of natural resources drives the development of new 
technologies to better utilize energy sources, culminating in the 
use of waste for biofuel production. This approach is strategic, 
as the use of agro-industrial and food waste aligns with the 
concept of circular bioeconomy and food security, allowing for 
value addition to waste and reducing environmental liabilities. 
Bioethanol stands out as the most promising biofuel derived 
from food waste, considering its chemical composition rich in 
carbohydrates and fermentable sugars. The biotechnological 
conversion of biomass into bioethanol requires pretreatment 
steps to facilitate enzyme action during the hydrolysis process, 
a crucial stage for sugar release. However, it underscores the 
need to optimize enzymatic processes, especially regarding 
pH and temperature ranges for enzyme activity, to ensure 
efficiency in converting biomass into bioethanol. The aim is to 
understand the processes involved in the enzymatic hydrolysis 
of organic waste. The literature review included studies with 
recent advances on the enzymatic hydrolysis of food waste for 
the sustainable production of bioethanol, using the keywords 
“Biomass,” “Enzymatic hydrolysis,” “Bioethanol,” and “Food 
waste” or “Food residues”. The hydrolysis of food waste for 
bioethanol production highlights the necessity of selecting the 
most efficient and sustainable pretreatment techniques, aiming 
to minimize byproduct generation while fully utilizing the raw 
material. Additionally, the use of different classes of enzymes in 
consortium during the production processes is emphasized.
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R E S U M O
A preocupação com a sustentabilidade ambiental e o uso racional dos 
recursos naturais impulsiona o desenvolvimento de novas tecnologias 
para melhor utilizar fontes de energia, culminando no uso de resíduos 
para a produção de biocombustíveis. Essa abordagem é estratégica, pois 
o uso de resíduos agroindustriais e alimentares está alinhado ao conceito 
de bioeconomia circular e segurança alimentar, permitindo a valorização 
dos resíduos e a redução das responsabilidades ambientais. O bioetanol 
destaca-se como o biocombustível mais promissor derivado de resíduos 
alimentares, considerando sua composição química rica em carboidratos 
e açúcares fermentáveis. A conversão biotecnológica da biomassa em 
bioetanol requer etapas de pré-tratamento para facilitar a ação enzimática 
durante o processo de hidrólise, estágio crucial para a liberação de 
açúcares. No entanto, ressalta-se a necessidade de otimizar os processos 
enzimáticos, especialmente em relação aos intervalos de pH e temperatura 
para a atividade enzimática, a fim de garantir eficiência na conversão 
da biomassa em bioetanol. O objetivo é compreender os processos 
envolvidos na hidrólise enzimática de resíduos orgânicos. A revisão da 
literatura incluiu estudos com avanços recentes na hidrólise enzimática de 
resíduos alimentares para a produção sustentável de bioetanol, utilizando 
as palavras-chave “Biomassa”, “Hidrólise enzimática”, “Bioetanol” e 
“Resíduos alimentares” ou “Resíduos alimentares”. A hidrólise de resíduos 
alimentares para a produção de bioetanol destaca a necessidade de 
seleção das técnicas de pré-tratamento mais eficientes e sustentáveis, 
visando minimizar a geração de subprodutos enquanto utiliza totalmente 
a matéria-prima. Além disso, destaca-se o uso de diferentes classes de 
enzimas em consórcio durante os processos de produção.

Palavras-chave: bioenergia; biocombustíveis; economia circular; 
resíduos alimentares.
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Introduction
Food waste constitutes a significant portion of municipal solid 

waste, encompassing agricultural and industrial food waste, as well as 
commercial and domestic waste (Prasoulas et al., 2020). Waste occurs 
when produced food is not utilized for consumption, stemming from 
issues in production, logistics, and supply, involving the reduction of 
food quality or quantity as a result of decisions and conclusions made 
by retailers, food service providers, and consumers (Lahiri et al., 2023).

Additionally, it is recognized that proper disposal is essential for 
food waste, with a common practice being its disposal in landfills or 
through incineration (Dhiman and Mukherjee, 2021; Batool et  al., 
2023). According to Esteban and Ladero (2018), food waste includes 
peels, bones, cooking oil, and discarded portions of food.

In the context of the circular economy and bioeconomy, the ap-
plication of food waste is observed in different routes, and Karthikey-
an et  al. (2018) consider the application in 4 viable options: a. for 
bioenergy and biofuels; b. to produce biofertilizers; c. to produce new 
biomaterials and industrial biochemicals; and d. to produce animal 
feed. More recently, Said et  al. (2023) studied the concept of food 
waste bioeconomy intending to integrate different pathways for val-
orization through the Internet of Things, Artificial Intelligence, and 
Machine Learning strategies.

Food waste is promising from an economic and environmen-
tal point of view to produce biofuels such as bioethanol, due to the 
high carbohydrate content in its composition (Panahi et  al., 2022), 
which can be starches, but also cellulose fibers, hemicellulose, and lig-
nin (Ávila et al., 2018). In the process of converting food waste into 
bioethanol, it is necessary to break down more complex molecules than 
starch, such as cellulose (Ogeda and Petri, 2010; Panahi et al., 2022); 
in this way, the production of bioethanol from food waste will involve 
first and second-generation technologies.

The route based on enzymatic hydrolysis is considered efficient 
(Zhou et  al., 2023) if the conditions for using and producing the en-
zymes are optimized (Chen et al., 2021). Studies addressing the enzy-
matic hydrolysis of various food waste biomasses focus on different 
biotechnological routes for the comprehensive utilization of diverse or-
ganic compounds (Caldeira et al., 2020). They emphasize the necessity 
of an enzymatic cocktail, incorporating accessory enzymes to enhance 
yields during the enzymatic hydrolysis of biomass (Álvarez et al., 2016; 
Chen et al., 2017; Du et al., 2020). Given the heterogeneous composi-
tion of food waste, subjected to pretreatment processes, complex chains 
are made available for enzyme hydrolysis. It is crucial to understand the 
chemical composition of raw materials to use specific enzymes tailored 
to each substrate (Zou et al., 2020).

Using food waste can reduce greenhouse gas emissions and glob-
al warming, as biofuels like bioethanol emit fewer greenhouse gases 
than conventional fuels (O’Driscoll et al, 2018; Abdullah et al., 2019). 
The production of biofuels from waste aligns with Sustainable Devel-
opment Goals 7, 12, and 13 — focusing on affordable and clean energy, 

responsible consumption and production, and climate action. In the 
context of the circular economy and bioeconomy, reusing food waste 
is crucial in waste logistics and for building a more sustainable energy 
matrix through enzymatic hydrolysis for biofuel conversion. 

Therefore, the present study aims to analyze recent advancements 
in the enzymatic hydrolysis of food residues as a sustainable treatment 
method for bioethanol production. The objective is to comprehend the 
processes involved in the enzymatic hydrolysis of food residues, span-
ning physical-chemical steps to the application of enzymes on various 
substrates of food waste.

Literature review
The study utilized Scopus, a major peer-reviewed literature data-

base, to search for articles on enzymatic hydrolysis of food residues 
for sustainable bioethanol production (Calof et al., 2022). The search 
included keywords like “Biomass,” “Enzymatic hydrolysis,” “Bioetha-
nol,” and “Food waste” or “Food residues.” The survey of articles was 
limited to the last 10 years to assess the primary advancements and 
technologies related to the enzymatic hydrolysis of food residues more 
comprehensively.

Out of 37 texts found, 36 were analyzed, revealing six main clus-
ters in a literature review. The primary clusters emphasized keywords 
such as “bioethanol” and “enzymatic hydrolysis,” with a focus on bio-
mass pretreatment for bioethanol production. The secondary clusters 
highlighted enzymes like “cellulase,” which are crucial for hydrolysis 
in food residues with lignocellulosic characteristics. Additionally, 
scientific productions predating the research were incorporated to 
provide further context and support for the topics addressed in this 
literature review.

Bioethanol from food waste
Biofuels are categorized into four generations based on the ori-

gin of the raw material used in conversion processes (Abdullah et al., 
2019; Hafid et al., 2021). First-generation biofuels, derived from tra-
ditional food sources, like sugar and starch, pose risks to food securi-
ty (Sun, 2024). Second-generation biofuels utilize less expensive and 
more abundant raw materials, including crop residues, lignocellulos-
ic materials, and food waste (Kordala et  al., 2024). The current in-
dustrial production of bioethanol often relies on first-generation raw 
materials like sugar cane or cereal grains, raising ethical concerns re-
garding global hunger and malnutrition (Mussatto et al., 2010; Pesce 
et al., 2020). However, it is important to note that some cereals, unfit 
for human or animal consumption, can be repurposed for ethanol 
production as waste. Additionally, there are underutilized agricul-
tural areas worldwide that could contribute to bioenergy production 
(Lubis and Parashakti, 2019). These considerations highlight the need 
for a comprehensive discussion on the ethical implications and the 
balance between food and bioenergy production to meet global so-
cietal needs.
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According to Osman et  al. (2021), second-generation biofuels 
can be produced from carbon-neutral biomass. Using food waste as 
a raw material for second-generation biofuel production involves an 
application based on recovery through material reuse (Dhiman and 
Mukherjee, 2020). The food waste chain proves versatile in terms of 
applications and can be contextualized within the biorefineries utiliz-
ing the raw material (Dahiya et al., 2018) (Figure 1). Among the op-
tions for food waste disposal, reuse stands out as the most sustainable 
alternative, either through recovery (biofuels, enzymes, biopolymers) 
or through direct use as animal feed. The concept of biorefinery has 
gained significance, and can be defined as the use of refinery schemes 
to extract value from biomass through an extensive range of intercon-
nected processes and products (Karmee, 2016).

Regardless of their origin, food waste is generally rich in carbohy-
drates, but the proportion of soluble (readily fermentable) and complex 
carbohydrates (requiring hydrolysis) can vary significantly (Angelo 
et al., 2017; Di Bitonto et al., 2018; Panahi et al., 2022; Rehman et al., 
2023). Thus, depending on the eating habits of each country, food waste 
can contain large amounts of starch and cellulose, which need to be 
saccharified to be efficiently fermented. Saccharification can be carried 
out chemically (Ulbrich et al., 2020), thermochemically (Hashem et al., 
2019), or enzymatically by adding, in the latter case, amylolytic and/or 
cellulolytic enzymes under appropriate conditions (Atitallah et al., 2019).

The production of bioethanol from waste is strongly dependent on 
the waste composition (Matsakas et al., 2014; Prasoulas et al., 2020). 
In  general, food waste is predominantly composed of carbohydrates 
(30 to 60%), proteins (5 to 20%), and lipids (15 to 40%), with the con-
tent of these components varying according to the biomass composi-
tion (Xue et al., 2019).

In food waste, lignocellulosic compounds are found in cereals 
(Apprich et al., 2014; Caldeira et al., 2020), consisting of the cellu-
losic component containing structural carbohydrates like cellulose, 
hemicelluloses, and heterogeneous polymeric lignin as primary com-
ponents. The content of these compounds fluctuates depending on 
different species (Das et al., 2021). Cellulose, due to its arrangement 
in linear and parallel microfibrils, is formed by extensive interchain 
and intrachain hydrogen bonds between individual strands. Cellu-
lose exhibits high structural stability and is insoluble in water and 
most organic solvents.

For the conversion of these compounds through biotechnological 
routes for bioethanol generation, it becomes necessary to break down 
more complex compounds into those that are easily assimilated (Ro-
bak and Balcerek, 2018). Therefore, the pretreatment of food residues 
aims to make the carbohydrate content available in the medium for 
saccharification to occur and obtain bioproducts with high added val-
ue (Banu et al., 2020).

Pretreatments of food waste biomass
Biomass pretreatments are essential for breaking down lignocel-

lulosic structures, modifying indirect factors, and improving direct 
factors that impact cellulose accessibility. These treatments facilitate 
cellulose and hemicellulose digestion and enhance hydrolysis rates 
of hydrolytic enzymes and chemicals (Dawson and Boopathy, 2007; 
Jørgensen et  al., 2007; Arumugam et  al., 2021). Various pretreat-
ment methods, categorized as physical, chemical, physical-chemical, 
and biological, have been explored to increase saccharification and 
bioethanol production (Rezania et al., 2018; Banu et al., 2020; Shukla 
et al., 2023).

Figure 1 – Application of the Food Waste Chain in the Context of Biorefineries.
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Chemical pretreatments are widely applied to lignocellulosic res-
idues and substrates to remove lignin and/or hemicelluloses, thereby 
decreasing the cellulose crystalline structure and increasing pore size 
and surface area. This makes cellulosic biomass more susceptible to 
cellulolytic enzyme action for efficient degradation into sugar mono-
mers (Behera et al., 2014; Das et al., 2021). At an industrial level, acid 
pretreatment, especially with sulfuric acid (H2SO4) and hydrochloric 
acid (HCl), is prevalent due to its efficiency in breaking down ligno-
cellulosic materials, primarily degrading hemicellulose. However, acid 
pretreatment may not be as effective in lignin breakdown (Arumugam 
et  al., 2021). Acid pretreatment breaks down some food waste com-
ponents into monomeric sugars, converting polysaccharides into oli-
gosaccharides and maltodextrins (Hafid et  al., 2017). Kitchen waste 
pretreated with sulfuric or hydrochloric acid can increase ethanol 
fermentation yield, mainly due to enhanced sugar production during 
enzymatic saccharification (Panahi et al., 2022).

Like acid treatment, controlling the medium’s pH can break cer-
tain lignocellulosic material chains. Alkaline pretreatment chemicals 
like sodium hydroxide (NaOH) and potassium hydroxide (KOH) have 
been applied to hydrolyze hemicellulose by saponifying intermolecu-
lar ester bonds of lignin and hemicellulose, preventing hemicellulose 
polymerization (Arumugam et al., 2021). Although chemical pretreat-
ments are widely used for waste sludge and lignocellulosic substrates, 
limited studies have focused on the organic fraction of municipal solid 
waste (MSW), as chemical pretreatment may not be suitable for easily 
biodegradable substrates with high carbohydrate content (Ariunbaatar 
et al., 2014; Hafid et al., 2017).

Öner and Nazan (2018) compared acid and alkaline pretreatment 
methodologies in kitchen waste for bioethanol production. They uti-
lized hydrochloric acid (HCl) and sodium hydroxide (NaOH) for acid 
and alkaline pretreatment, respectively, in concentrations ranging 
from 0 to 5%, with incubation times of 30, 60, and 90 minutes, and 
temperatures of 30°C and 60°C. The optimal conditions for pretreat-
ment involved incubating samples in 1% HCl for 90 minutes at 60°C, 
producing 638.24 mg carbohydrates/g of fermentable sugars in the dry 
sample. Pretreatment with 3% NaOH for 90 minutes at 30°C yielded 
414.35 mg of carbohydrates/g of fermentable sugars and a 61.66% glu-
cose recovery. Acid or alkaline pretreatment, along with increasing 
temperatures, enhanced glucose yield from kitchen waste compared to 
untreated organic material.

Physical treatment involves breaking down material structures, 
including milling and hydrothermal treatment of biomass. Smaller 
particle sizes from milling increase the surface area accessible to en-
zymes, leading to faster hydrolysis. Hydrothermal treatment aims to 
alter the structure of the insoluble fraction, making it more biodegrad-
able (Hafid et al., 2017; Gao et al., 2021; Zhang et al., 2023). However, 
fine granulometry in biomass can lead to lumps during pretreatments 
and enzymatic hydrolysis, negatively impacting total sugar production 
(Sarkar et al., 2012; Hafid et al., 2017).

Among the most widely used pretreatments currently are ther-
mochemical methods, utilizing acids and bases with high tempera-
tures to produce low molecular weight products like fermentable 
sugars (Zabed et al., 2019). However, there is a shift in the industry 
towards more sustainable methodologies, incorporating biological 
means such as microorganisms and enzymes in bio-product produc-
tion (Saha et al., 2016; Shukla et al., 2023).

In the biological process, microorganisms utilize free and read-
ily accessible carbohydrates as the main carbon source during the 
pretreatment process. Maintaining a pure culture of bacteria and 
optimizing their growth conditions for food waste pretreatment 
is usually challenging due to microbial competition with native 
microorganisms (Hafid et  al., 2017; Panahi et  al., 2022). Biolog-
ical pretreatment methods using microorganisms, such as white, 
brown, or soft rot fungi, can be employed for delignification and 
sugar production from lignocelluloses (Tabatabaei et  al., 2020). 
For instance, fungi of the Basidiomycetes genus are cellulase and 
xylanase producers, while the oxidative-ligninolytic system con-
sists of laccases, ligninases, and peroxidases that degrade lignin 
and phenyl components (Hatakka, 1983; Ilić et  al., 2021). Extra-
cellular ligninolytic enzymes degrade lignin, making the substrate 
more easily degradable without producing inhibitors commonly 
found in other pretreatments (Salvachúa et  al., 2011). Specifical-
ly, the white-rot basidiomycete Irpex lacteus demonstrates a high 
capacity for biodegradation (Mezule and Civzele, 2020; Salvachúa 
et al., 2011).

Moreover, crude enzymes produced from biomass lysate are di-
rectly used for pretreatment to reduce costs (Kiran et al., 2014; Yin 
et  al., 2016). Biological pretreatment offers advantages such as low 
energy requirements and mild conditions. However, there is an in-
evitable trade-off between lignin removal and sugar consumption, as 
the fungal strategy involves degrading lignin to access cellulose and 
hemicellulose more easily. Another main disadvantage, compared 
to physicochemical pretreatments, is the extended time required to 
achieve similar digestibility improvements, often ranging from 4 to 8 
weeks (Sarkar et al., 2012). This time can be reduced to 2 to 3 weeks 
by combining biological treatment with an alkaline wash under mild 
conditions and optimizing operating conditions (Salvachúa et  al., 
2011; López-Abelairas et al., 2013).

Potumarthi et al. (2013) studied simultaneous pretreatment and 
saccharification of rice husks by Phanerochaete chrysosporium. Ef-
fective delignification was achieved by cultivating the fungus on rice 
husks, and the pretreated biomass underwent enzymatic hydrolysis. 
Enzymes such as cellulase, xylanase, lignin peroxidase, glyoxidase, 
and alcohol aryl oxidase were produced during fungal pretreatment. 
The highest reducing sugar content (895 mg/mL) was observed on 
the eighteenth day of fungal treatment. This method avoids operating 
costs associated with washing and removing inhibitors during con-
ventional pretreatment.
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Enzymatic hydrolysis
Enzymatic hydrolysis has emerged as a primary method in 

most biological processes for treating and valorizing food waste, 
serving as a precursor to bioethanol production from food waste 
(Salimi et al., 2019; Zhang et al., 2020; Zou et al., 2020). Notably, 
enzymatic hydrolysis offers advantages such as the absence of toxic 
compounds generated for yeast during fermentation compared to 
chemical hydrolysis processes (Sagar et  al., 2024). Additionally, it 
exhibits low corrosion when compared to chemical methods (Sark-
ar et al., 2012; Zhang et al., 2012; Lv et al., 2024).

Enzymatic hydrolysis is employed to break down polysaccharides 
in food waste, releasing simple sugars like glucose, xylose, fructose, 
galactose, and ribose. While yeasts of the genus S. cerevisiae easily 
utilize sugars like glucose and fructose, sugars derived from hemicel-
lulose hydrolysis, such as pentoses, may require other microorgan-
isms or even genetically modified organisms (Qaseem et al., 2021). 
The concentration and productivity of bioethanol can vary based on 
the fermentable sugar concentration in the hydrolyzed broth. Conse-
quently, selecting an appropriate enzymatic formulation that aligns 
with the composition of food waste is crucial to enhancing the en-
zymatic hydrolysis process (Anwar Saeed et  al., 2018; Salimi et  al., 
2019), as different matrices may require specific or combined enzyme 
application configurations (Esteban and Ladero, 2018) (Figure 2).

In Table 1, enzymes used in the enzymatic hydrolysis process 
of food waste for bioethanol production are presented, highlight-
ing the main use of cellulolytic and amylolytic enzymes, as well 
as commercial enzymes in the hydrolysis process. According to 
Anwar Saeed et al. (2018), the dominant enzyme used in the hy-
drolysis of food waste to produce ethanol is glucoamylase, also 
known as amyloglucosidase. Since food waste is rich in carbo-
hydrates and starches, this enzyme is responsible for breaking 
long-chain glycosidic bonds into glucose units, which are then 
consumed by yeast and transformed into ethanol during the fer-
mentation process.

Jarunglumlert et al. (2021) assessed the enzymatic hydrolysis 
of cafeteria food waste using the commercial enzyme α-amylase 
derived from Aspergillus oryzae (Sigma–Aldrich). They deter-
mined the optimal enzyme concentration and hydrolysis dura-
tion for achieving the highest reducing sugar content. The en-
zyme concentration ranged from 1 to 5% w/w (g enzyme/g dry 
MSW), and hydrolysis occurred for 1 to 9 hours at 60°C, main-
taining the pH of the food waste biomass within the ideal range 
for enzymatic activity (4.0–6.5), as indicated by the supplier. 
With an increased enzyme concentration (5%), the production 
of reduced sugar increased, reaching a maximum of 0.49 g/g of 
food waste.

Figure 2 – Food residues and enzyme classes for hydrolysis.
Source: (1) Savatović et al. (2009); (2) Sharma et al. (2012); (3) USDA National Nutrition Database.
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Food waste type Enzymes Origin of enzymes Hydrolysis process Efficiency References

Municipal solid 
waste (MSW) α-amylase

Commercial enzyme 
produced by 

Aspergillus oryzae

10% (w/v) of MSW, enzyme 
concentration of 1, 3, 4, and 5% 

w/w (g enzyme/g dry FW).
Hydrolysis was carried out to 1, 2, 
3, 4, 5, and for 9h at 60°C and pH 

of 4.0–6.5.

After 120h of fermentation, 
almost all reducing sugars in 

the hydrolyzate were converted 
to ethanol, yielding 0.43–0.50 
g ethanol/g reducing sugar, or 

84.3–99.6% of the theoretical yield

Jarunglumlert 
et al. (2021)

Household 
food waste

Cellulase, amylase, 
amyloglucosidase Commercial enzymes

pH 4.8 and 50°C, a solid 
load of 10% ST biomass/v, 

supplementation with three 
enzymes (2 to 30 FPU/g ST)

Maximum fermentation yield 
reaching 83%. Enzymatic mixture 

with the highest amount of 
cellulolytic and amylolytic enzymes, 

with ethanol yields reaching 
141.06±6.81 g ethanol/kg residue

Ntaikou et al. 
(2021)

Kitchen 
food waste Amylase Enzyme produced by 

Bacillus licheniformis

40% w/v of dry material for 8h 
with 15 IU/g of amylase at 50°C 

with pH at 7.5

The process developed in the 
present study leads to 0.129 g/
mL, that is, 0.32 g/g of ethanol 

production biomass.

Sondhi and 
Kaur (2020)

MSW

Endo- and 
exoglucanase, 

xylanase, 
cellulase, amylase, 
β-glucosidase, 

β-xylosidase and 
glucoamylase

Commercial 
glucoamylase and 

other enzymes 
produced in the 

laboratory by the 
fungus Fusarium 

oxysporum

Enzymatic cultivation 
supplemented with pretreated 
MSW (cultivation to RS ratio, 

1/10 w/w) and commercial 
glucoamylase, hydrolysis was 

carried out at 50±1°C on a rotary 
shaker (250 rpm)

Supplementation of the mixed 
culture with glucoamylase resulted 

in 30.3 g/L of ethanol with a 
volumetric productivity of 1.4 g/L/h

Prasoulas et al. 
(2020)

MSW Amylase and 
cellulase

Amylolytic 
(NS22109) and 

cellulolytic (NS22177) 
produced by 
Novozyme

Starch in MSW was hydrolyzed by 
amylase (36 μL/g starch) at 65°C 
for 1 h. Followed by hydrolysis of 
cellulose with cellulase (304 μL/g 

cellulose) at 50°C for 5 h

Saccharification yielded between 
16.43-17. 31 g of glucose per 100 g 

of raw material

Taheri et al. 
(2020)

Hamburger waste α-amylase
Commercial enzyme 
supplied by Ningxia 

Chemicals Ltda.

50g of ground residue and 
various enzyme loading volumes 
(0.02 mL/L, 0.08 mL/L and 0.14 
mL/L) named B1, 2 and 3. The 
temperature of B1 and B3 was 

90°C, while the temperature of B2 
was set to 95°C

Reducing sugar (RS) production 
was 39.2 g/L, and hydrolysis 

efficiency of 0.784 g AR/g RH 
could be achieved with B3, with 

the highest ethanol production of 
27.4 g/L

Han et al. 
(2020)

Canteen waste 
(rice, meat and 
vegetables)

Glucoamylase Commercial enzyme 
produced by A. niger

Glycoamylase (85 U/mL), 
hydrolysis was performed at 100 

rpm for additional 6h (Hafid 
et al., 2015)

Hydrolysis efficiency of 86.8% 
was observed via acid-enzymatic 

pretreatment. The ethanol yield was 
0.42 g/g with a conversion efficiency 

of 85.38%

Hafid et al. 
(2017)

Fruit waste
Pectinase, 

glucanase and 
xylanase

Enzymes produced 
by microorganisms 

A. citrisporus 
and Trichoderma 
longibrachiatum

Enzymes were added with 
concentrations of 12–16 and 

10–25 mg protein/g fruit waste, 
respectively, 1% matter (w/v) at pH 

4.8 for 48h at 45°C

Enzymatic conversion rates of fruit 
residues into fermentable sugars 

were approximately 90% after 48 h. 
Ethanol concentrations (14.4–29.5 

g/L) and yields (90.2–93.1%)

Choi et al. 
(2015)

Kitchen 
food waste

α-amylase and 
amyloglucosidase-

AMG

Commercial enzymes 
- Megazyme

Hydrolysis was performed at 
combined enzyme dosage levels 

(0–3.6% v/v α-amylase and 0–3.2% 
v/v amyloglucosidase-AMG) at pH 

5.0, 50°C for 30 min

The glucose concentration increased 
by about 300% after pretreatment 
with acid or KOH in combination 
with enzymatic hydrolysis when 

compared to the untreated residues

Vavouraki et al. 
(2014)

Kitchen 
food waste

α - amylase, 
amyloglucosides, 

cellulase and 
glycosidase

Commercial enzymes 
(Aspergillus oryzae, 

A6211-1MU; 
Aspergillus niger, 

AMG; Trichoderma 
viride, C1794-10KU, 
and almonds, 49290)

To liquefy the starchy portion, 
α-amylase was added (120 U/g 

dry substrate (SS)) at 95°C for 1h 
and pH 5.5, the oligosaccharides 
and the cellulosic portion were 
processed with AMG (120 U/g 
SS), cellulase (8 FPU/g SS), and 
β-glucosidase (50 U/g SS).

The highest and lowest glucose 
production rates were found 
to be 0.644 and 0.128 (h−1). 

Fermentation results indicated that 
final ethanol concentrations are not 
significantly improved by nutrient 

addition (17.2–23.3 g/L)

Cekmecelioglu 
and Uncu 

(2013)

Table 1 – Use of enzymes in the enzymatic hydrolysis processes for obtaining bioethanol from food waste.
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Sondhi and Kaur (2020) employed amylase produced in the labora-
tory by Bacillus licheniformis for the enzymatic hydrolysis of household 
food waste, using 15 IU/g of amylase and a pH of 7.5. The process result-
ed in the production of ethanol at a rate of 0.32 g/g of biomass. The waste 
primarily consisted of potato peels, onions, and other vegetables, rich in 
starch. Amylase acted to break the α-(1–4) bonds of starch.

Viscosity is a crucial parameter in enzymatic processes, and α-am-
ylase enzymes, by releasing soluble sugars, can reduce the viscosity of 
hydrolysis media. Amylase treatment in the enzymatic saccharification 
of kitchen waste effectively reduced viscosity and facilitated fermenta-
tion by converting starchy sugars to glucose (Sondhi and Kaur, 2020).

Cekmecelioglu and Uncu (2013) conducted enzymatic hydrolysis of 
kitchen food waste using four enzymes. The process involved liquefaction 
of the starchy portion with α-amylase, followed by simultaneous process-
ing of starch-based oligosaccharides and the cellulosic fraction using am-
yloglucosidase, cellulase, and β-glucosidase. The highest glucose concen-
tration achieved was 64.8 g/L, calculated as 0.70 g glucose/g dry residue 
(or 70% of non-pretreated samples) after 6 hours of hydrolysis.

Taheri et al. (2020) performed enzymatic hydrolysis of household 
food waste using amylolytic and cellulolytic formulations from No-
vozymes. The hydrolysis occurred in two stages, with amylase hydro-
lyzing starch at an optimum pH of 4.8 and a temperature of 65°C in 
the first stage, followed by cellulase hydrolysis of cellulose at 50°C 
in the second stage. The highest glucose concentrations were observed 
in food waste hydrolysates subjected to hexane oil extraction, yielding 
21.66 g of glucose per 100 g of raw material, with 90.30 and 53.75% 
degradation of starch and cellulose, respectively.

Enzymatic hydrolysis offers many advantages over the chemical 
process. However, one of the challenges associated with using enzy-
matic hydrolysis for bioethanol production is the current cost of pre-
treatment and enzymes, which are significant obstacles to large-scale 
ethanol production (Berlin et al., 2006). 

To make enzymatic hydrolysis of food waste more economical, it is 
preferable to produce enzymes on-site from less expensive raw materi-
als. Solid-state fermentation (SSF) stands out as a promising approach, 
offering several biotechnological advantages such as greater fermen-
tation capacity, stability of the final product, less catabolic repression, 
and economical technology (Behera and Ray, 2016; Sadh et al., 2018; 
Arumugam et al., 2021). SSF is particularly suitable for the cultivation 
of filamentous fungi, as solid substrates mimic the fungi’s natural habi-
tat, resulting in better growth and secretion of a wide range of enzymes. 
The selection of an appropriate substrate is crucial for the process, with 
the medium acting as physical support and a nutrient source (De Cas-
tro and Sato, 2015; Prasoulas et al., 2020).

Choi et al. (2015) evaluated the activities of pectinase, endo- and 
exoglucanase, and xylanase produced by Aspergillus citrisporus and 
Trichoderma longibrachiatum in the enzymatic hydrolysis process of 
fruit residues (citrus fruits, apples, bananas, and pears). Two unknown 
enzymes, referred to as internal enzyme A (produced by A. citrisporus) 

and internal enzyme B (produced by T. longibrachiatum), were assessed 
for endo and exoglucanase, pectinase, and xylanase activities. The en-
zymatic activities for enzyme A were 8.41, 0.18, 170.95, and 17.90 U/
mg of protein for endoglucanase, exoglucanase, pectinase, and xy-
lanase, respectively. Enzyme B exhibited enzymatic activities of 13.22, 
1.26, 4.34, and 1.11 U/mg of protein for endoglucanase, exoglucanase, 
pectinase, and xylanase, respectively. Enzymes A or B were added to 
fruit waste at concentrations of 12–16 and 10–25 mg protein/g fruit 
waste, respectively. Enzymatic hydrolysis was carried out at 1% matter 
(w/v) with a pH of 4.8 at 45°C. The enzymatic conversion rates of fruit 
residues to fermentable sugars were approximately 90% for all raw ma-
terials after 48 h. Fruit waste proves to be an attractive biomass alter-
native for bioethanol production due to its high levels of fermentable 
sugars, such as sucrose, glucose, and fructose (Choi et al., 2015).

In addition to the factor of polysaccharide hydrolysis, another im-
portant consideration for the bioconversion of food waste into valuable 
bioproducts is the solid-liquid ratio of the substrates. A low solids load 
increases the energy demand to raise ethanol concentration during fer-
mentation, while a high load causes substrate inhibition (Uncu and Ce-
kmecelioglu, 2011). However, a high proportion of solids to liquid can 
pose challenges in terms of homogeneous mixing, heat and mass trans-
fer problems, and diffusion limitations of enzymes and final products. 
Therefore, careful attention should be paid to optimizing the mixing 
system in a bioreactor and/or enzymatic hydrolysis operation methods 
(e.g., using fed-batch instead of a batch) to address both the relatively 
high enzyme digestibility index and the reduction of sugar concentra-
tion during batch enzymatic hydrolysis of food waste (Yan et al., 2012).

Furthermore, Choi et  al. (2015) note that higher concentrations 
of food residues correspond to increased enzymatic activity with both 
enzymes. Studies highlight that enzymatic hydrolysis of food waste is 
affected by factors like enzyme concentration, specificity, and substrate 
characteristics (Patria et al., 2022). 

Similar findings were observed by Ntaikou et al. (2021), who stud-
ied the enzymatic hydrolysis of food waste, varying the enzymatic 
concentration of a mixture of cellulolytic and amylase enzymes from 
2 to 30 FPU/g TS. They found that higher enzyme concentrations (30 
FPU/g TS) led to nearly 95% conversion rates of residues to reducing 
sugars and the highest ethanol conversion rate. The authors empha-
sized that higher enzyme concentrations enhanced enzymatic hydroly-
sis, especially with the simultaneous action of cellulolytic and amylase 
enzymes on starches and cellulose, increasing conversion rates. Higher 
enzyme concentrations can accelerate hydrolysis, but considerations 
for enzyme stability and cost-effectiveness are crucial when balancing 
enzyme concentration. 

Enzymes with high specific activity are more effective in substrate 
conversion, yielding higher sugar yields during food waste hydrolysis 
(Torres-León et al., 2021; Padhan et al., 2023). Selecting enzymes with 
high substrate-specific activity in food waste can enhance biomass con-
version into fermentable sugars (Hafid et al., 2017; Han et al., 2020). 
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