
1
Revista Brasileira de Ciências Ambientais (RBCIAMB) | v.59 | e1859 | 2024

A B S T R A C T 
It is mandatory to make the circular economy a reality, developing 
ways of transforming waste into valuable products. In this context, 
investigating the biotechnological potential of different residues 
is most welcome. This review analyzes how orange waste can be 
used as biorefinery feedstock to produce different bioproducts 
using yeasts as the major biocatalysts. In addition to the current 
orange market, its pectin-rich biomass is described in detail, aiming 
to elucidate how yeast cells can convert it into ethanol, xylitol, 
polyphenols, and organic acids (some of them, volatile compounds). 
Genetic, metabolic, and evolutionary engineering are also analyzed 
as biotechnological tools to improve the existing processes. Finally, 
this review also addresses the potential employment of fruit-
dwelling yeasts in biorefining pectin-rich biomasses such as orange 
wastes. All the data presented herein lead to the conclusion that 
these residues could already be used for noble purposes.
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R E S U M O
Para tornar a economia circular uma realidade, é obrigatório 
desenvolver formas de transformar resíduos em produtos de valor. 
Nesse contexto, investigar o potencial biotecnológico de diferentes 
resíduos é bastante desejável. Esta revisão analisa como os resíduos 
de laranja podem ser usados como matéria-prima de biorrefinaria 
para produzir diferentes bioprodutos utilizando leveduras como 
principais biocatalisadores. Além do mercado atual da laranja, a 
biomassa da fruta, rica em pectina, é descrita detalhadamente, 
visando elucidar como as células de levedura podem convertê-la em 
etanol, xilitol, polifenóis e ácidos orgânicos (alguns deles, compostos 
voláteis). As engenharias genética, metabólica e evolutiva também 
são analisadas como ferramentas biotecnológicas para melhorar os 
processos já existentes. Finalmente, esta revisão também aborda o 
potencial emprego de leveduras isoladas de frutas no biorrefinamento 
de biomassas ricas em pectina, como resíduos de laranja. Todos os 
dados aqui apresentados levam à conclusão de que esses resíduos já 
poderiam estar sendo aproveitados para fins nobres.
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Introduction
the vast majority of the countries in all continents signed the Par-

is Agreement, thus committing to reduce carbon dioxide emissions. 
In fact, to meet such an idealized agreement, CO2 emissions must 
be reduced by 43% by 2030 (United Nations Climate Change, 2023). 
A  though this goal frequently appears in many politicians’ speeches, 
the truth is little has been done for it to be reached. Undoubtedly, with-
out a fast and disruptive change of our linear economy model to a cir-
cular one, humanity will not avoid the serious consequences of severe 
climate change.

Ironically, the countries that historically have contributed less to 
the greenhouse effect suffer the most from climate change and are most 
likely to reverse this catastrophic scenario. This is the case of Brazil, 
whose energetic matrix is majorly renewable, besides having a huge 
potential to put a circular economy into practice. This is especially due 
to the possibility of employing its commodities production residual 
chain into second-generation bioprocesses (Alves Júnior et al., 2023).

Orange is one of the leading Brazilian commodities. In the Sys-
tematic Survey of Brazilian Agricultural Production, carried out by the 
Brazilian Institute of Geography and Statistics [Intituto Brasileiro de 
Geografia e Estatística] (IBGE, 2022), Brazil produced 16.9 million tons 
of orange in 2022. According to the Brazilian Ministry of Agriculture, 
around 80% of this production results in industrialized juices, with the 
European Union as their primary buyer. More than 67% of worldwide 
orange juice production happens in Brazil, which places the country in 
the spotlight for orange production and processing (Food and Agricul-
ture Organization of the United Nations, 2021). However, around 50% 
of the mass of processed fruits consists of waste, including peels, pom-
ace, and seeds (Gaind, 2017; de la Torre et al., 2019; Šelo et al., 2021).

Nevertheless, as a negative impact, all this production accounts 
for the country’s fourth largest generation of residual biomass.  
According to the National Solid Waste Plan (Ministério do Meio Am-
biente, 2022), orange cultivation generates 8.8 million tons of waste 
annually in Brazil. This amount is only behind sugarcane (201.4 mil-
lion tons of waste generated annually), soybeans (41.8 million tons/
year), and corn (29.4 million tons/year). Orange waste, however, unlike 
the other three mentioned, ends up being underused. This is mainly 
due to its high moisture content and the high cost of drying, which 
makes transportation and storage difficult and makes it unfeasible to 
burn it to generate heat or electrical energy. Obviously, this waste can 
be destined for composting, where it increases the organic load of the 
soil and functions as a source of nutrients. Nevertheless, this alterna-
tive can reduce the soil’s pH, negatively affecting the process (Ruiz and 
Flotats, 2014). Because of this, the pomace and peel of this fruit, when 
used, are primarily intended only for dietary supplementation for cattle 
and goats (Oloche et al., 2019; Guzmán et al., 2020). Controversially, 
though, this biomass imparts a bitter taste to animal food, and stud-

ies in the literature point to a potential generator of diseases in cattle 
(Bampidis and Robinson, 2006; de la Torre et al., 2019).

On the other hand, these residues can fortunately have much more 
profitable and environmentally sustainable destinations if used in sec-
ond-generation (2G) biorefineries. In these industrial environments, 
several agro-industrial wastes and by-products of agricultural produc-
tion, including orange peels and pomace, can be transformed into a 
myriad of bioproducts through the metabolism of microorganisms 
such as yeast (Fenner et al., 2022; Tadioto et al., 2022; Scapini et al., 
2023b). In this context, this review presents the state of the art and ana-
lyzes the biotechnological potential of orange waste in 2G biorefineries 
with fermentative processes driven by yeast. Literature was searched on 
the basis of previous studies and experiences of the authors, who have 
been working in the field for the last few years. The references were 
chosen according to their relevance to this study’s subject. Also, foun-
dational articles were sometimes used as jumping-off places, leading to 
more recent articles that cited them.

Orange Wastes: a Pectin-Rich Substrate
Orange waste contains biopolymers and bioactive compounds, 

such as proteins, carbohydrates, lipids, lignin, polyphenols, and nat-
ural dyes, which can be recovered and applied in the production of 
food, pharmaceutical products, and cosmetics. Furthermore, some of 
these components can be converted into several high-value chemical 
products, such as bioplastics, functional materials, and biofuels (Fazz-
ino et al., 2021; Talekar et al., 2023). Oranges also display several bio-
active phenolic compounds such as hesperidin, naringin, quercetin, 
rutin, gallic acid, caffeic acid, p-coumaric acid, and chlorogenic acid 
(Singh B. et al., 2020; Ortiz-Sanchez et al., 2023; Vadalà et al., 2023). 
These compounds can benefit human health, mainly because they have 
antioxidant, anti-inflammatory, anticancer and antidiabetic activities 
(Andrade Barreto et al., 2023; Ortiz-Sanchez et al., 2023).

On the other hand, to transform fruit waste into different bioprod-
ucts from the metabolism of yeast cells, attention must be paid to the 
carbohydrates present in these substrates, initially in the form of three 
polysaccharides: cellulose, hemicellulose, and pectin, whose concen-
trations vary according to the source of biomass used (Scapini et al., 
2023a). On average, orange residues are composed (on dry-weight ba-
sis) of 18.1% of cellulose, 13.1% of hemicellulose, and 28.5% of pectin 
(Vadalà et al., 2023).

Cellulose is a homopolysaccharide of glucose, and hemicellulose 
is a heteropolymer whose composition varies according to the plant 
species, although it is mostly represented by xylan, a polysaccharide 
of xylose. Pectin, in turn, is formed by a linear chain of galacturon-
ic acid molecules (which may or may not be methylated) linked to-
gether through ß-1,4 glycosidic bonds and branched chains com-
posed mainly of galactose, rhamnose, arabinose, and xylose (Figure 
1) (Bai et al., 2019; Brandon and Scheller, 2020; Zdunek et al., 2021).  
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The percentage of pectin tends to be lower in the so-called lignocellu-
losic biomasses, such as the woody structures of trees and sugarcane 
residues, and higher in residual biomasses such as fruit bagasse and 
peels (especially orange), as stated above. These residual biomasses are, 
therefore, called pectin-rich biomasses. In them, the lignin content 
hardly exceeds 2% of the dry weight, which makes their pretreatment 
(the process prior to hydrolysis and fermentation) more economical 
than that of lignocellulosic biomasses, where the percentage of lignin 
can exceed 30% (Venkatanagaraju et al., 2020; Paliga et al., 2022).

Biotechnological Potential of Orange Residues
For the sugars available in residual plant biomasses to be me-

tabolized by yeast cells, the polysaccharides must be initially hydro-
lyzed. Several alternatives to this initial process, also called saccha-
rification, have been proposed to improve the availability of carbon 
sources for fermentation. However, the method currently recognized 
as the most viable does not only seek the hydrolysis of biomass sep-
arately from the fermentation process, but rather the combination of 
both, which is known as Simultaneous Saccharification and Fermen-
tation (SSF). SSF allows sugars released with the hydrolysis of poly-
saccharides to be readily metabolized by microbial cells (Panda and 
Maiti, 2024). In contrast, the conventional separate hydrolysis and 
fermentation (SHF) process allows the introduction of an intermedi-
ate detoxification step. This step aims to remove possible inhibitors, 
optimizing the operational conditions independently for each stage 
of the process (Widmer et al., 2010).

Although the chemical hydrolysis of polysaccharides is possible, 
enzymatic methods have been more widely used due to higher yields 
and less formation of toxic products (Bonatto et al., 2023). Cellulose and 
xylan hydrolysis have been extensively studied, given the interest in en-
abling ethanol production from lignocellulosic residues such as straw 
and sugarcane bagasse (by-products of first-generation ethanol produc-
tion), which have negligible concentrations of pectin. On the other hand, 
assuming the use of residual fruit biomass, the pectin concentration is 
significantly higher, as already pointed out above. In this case, the hydro-
lysis of this last polysaccharide becomes predominant in enabling the 
desired biotransformation (Scapini et al., 2023c). Still, it is important to 
highlight that the enzymatic hydrolysis of xylan present in orange resi-
dues can be harnessed to generate Xylooligosaccharides, molecules with 
great potential as functional food ingredients (Ávila et al., 2020; Martins 
and Goldbeck, 2023). In this context, for example, Martins and Gold-
beck (2023) demonstrated that the integration of pectin production, 
Xylooligosaccharides, and bioenergy (with biogas production from free 
sugars and cellulose) could be an alternative to achieve the economic 
viability of orange waste-based biorefineries (see section 4).

In the Fungi kingdom, pectin hydrolysis depends on the synergistic 
action of enzymes that, together, are called pectinases, namely poly-
methylgalacturonate esterase, polygalacturonate lyase, endo-polygalac-
turonase, and exo-polygalacturonase. While the first removes the meth-
yl ester groups from galacturonic acid, the last three are responsible for 
depolymerization. Endo-polygalacturonase promotes internal breaks 
randomly, and exo-polygalacturonase breaks from the ends of the pec-
tin molecule. Polygalacturonate lyase catalyzes the cleavage of ß-1,4 
bonds in an endo or exo manner by trans elimination. The total hydro-
lysis of pectin releases especially the monosaccharides D-galacturonic 
acid, D-galactose, L-rhamnose, L-arabinose, and D-xylose (Satapathy 
et al., 2020; Bassim Atta and Ruiz-Larrea, 2022; Paliga et al., 2022).

After hydrolysis, the yeast employed in the process must be capa-
ble, as already mentioned, of metabolizing the sugars arising from the 
breakdown of polysaccharides. Depending on the metabolic routes 
they will follow, the products obtained can differ, as described below.

Bioethanol production
A profitable and environmentally sustainable destination for the 

residual orange biomass is the production of second-generation eth-
anol (2G ethanol). This residual plant biomass is rich in pectin, a het-
eropolysaccharide that, when hydrolyzed, mainly releases the sugars 
galacturonic acid, galactose, rhamnose, arabinose, and xylose (Paliga 
et al., 2022). Therefore, ethanol production from this substrate depends 
on the action of microorganisms capable of metabolizing the afore-
mentioned carbohydrates via fermentation.

D-galacturonic acid is the primary pectic sugar, accounting for 
approximately 70% of pectin (Grassino et al., 2018; Vaez et al., 2021; 
Frempong et al., 2022). Within the Kingdom Fungi (which includes 

Figure 1 – Plant cell walls’ polysaccharides. (A) Cellulose, hemicellulose, 
and pectin are interconnected in orange peel’s plant cell walls. (B) Cellulose 
is a homopolysaccharide of glucose (green hexagons), and hemicellulose 
has a main branch of xylose (black pentagons) in which arabinose (orange 
pentagons) and glucuronic acid (blue hexagons) molecules are attached. Pectin 
is mainly composed of galacturonic acid (pink hexagons), rhamnose (yellow 
hexagons), galactose (purple hexagons), and arabinose (orange pentagons). 
Source: adapted from Cosgrove (2005), Phyo et  al. (2017), Bai et  al. (2019), 
Brandon and Scheller (2020) and Zdunek et al. (2021).
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yeasts), the metabolism of this hexose initially depends on its reduc-
tion to L-galactonate, in a reaction catalyzed by the enzyme galacturo-
nate reductase, which depends on the coenzymes NADPH or NADH 
as electron donors (Figure 2). Subsequently, galactonate dehydratase 
generates 2-keto-3-deoxy-L-galactonate, which is later converted to 
pyruvate and L-glyceraldehyde by the enzyme deoxygalactonate-aldo-
lase (Richard and Hilditch, 2009; Biz et al., 2016). While L-glyceral-
dehyde is reduced to glycerol by glyceraldehyde reductase, pyruvate 
can be a. transformed into Acetyl-CoA and enter the Krebs Cycle if 
the metabolism is respiratory, or b. decarboxylated to acetaldehyde, 
which is finally reduced to ethanol, through alcoholic fermentation. 
In addition to these enzymes, for yeasts to metabolize galacturonic 
acid, a transporter must also be present on their plasma membrane 
(Protzko et al., 2019).

Among the pectic sugars, the most widely fermented by yeast 
is D-galactose. For galactose to be metabolized, it initially en-
ters cells through membrane transporters of the HXT family. In 
the cytoplasm, this hexose is converted to glucose-6-phosphate 
via the Leloir Pathway. This pathway comprises three sequential 
reactions: phosphorylation of galactose by galactokinase, gener-
ating galactose-1-phosphate that is subsequently isomerized, by 
galactose-uridyltransferase, to glucose-1-phosphate, which, fi-
nally, is converted to glucose-6-phosphate in a reaction catalyzed 
by phosphoglucomutase (Leloir, 1951; van Maris et  al., 2006).  
Glucose-6-phosphate then follows the glycolytic pathway until py-
ruvate, which ends up being converted to ethanol during alcoholic 
fermentation (Figure 2).

Unlike most sugars, L-rhamnose and L-arabinose are more 
common in nature than their D isomers. In yeast capable of metab-
olizing L-rhamnose, it is initially oxidized by the enzyme rhamnose 
dehydrogenase to L-rhamnon-1,4-lactone, which is subsequent-
ly converted to L-rhamnonate by rhamnon-lactonase (Figure 2). 
This  second product of the pathway is then dehydrated by rham-
nonate dehydratase, generating 2-keto-3-deoxy-L-rhamnonate, 
which is finally cleaved into pyruvate and lactaldehyde by an aldo-
lase (Twerdochlib et al., 1994). Although L-arabinose is a pentose 
metabolized by a large number of yeast species, few of them are 
capable of fermenting it (i.e., they preferentially respire this sugar), 
and this fermentation is generally of low yield (Gong et  al., 1981; 
Dien et  al., 1996). In these yeasts, L-arabinose is initially reduced 
to L-arabitol, which is then oxidized to L-xylulose by the action 
of arabinose reductase and arabinitol dehydrogenase, respectively 
(Figure 2). L-xylulose is isomerized to D-xylulose in two sequential 
reactions catalyzed by the enzymes xylulose reductase and xylitol 
dehydrogenase. Finally, D-xylulose, after being subsequently phos-
phorylated, enters the Pentose-Phosphate Pathway (PPP) to gen-
erate Glycolytic-Pathway intermediates and, subsequently, ethanol 
from pyruvate (Stambuk et al., 2008).

Indeed, several studies have shown that it is feasible to produce eth-
anol from orange wastes. Oberoi et al. (2010), for example,succeeded in 
producing ethanol from orange peel powder (OPP) with a yield of 0.46 
g/g on a substrate-consumed basis and a volumetric productivity of 3.37 
g/L/h. Interestingly, the authors submitted the OPP to two subsequent acid 
hydrolysis processes at an optimum pH of 5.4 and temperature of 34°C. 

Figure 2 – Yeast metabolic pathways from the main sugars in orange waste to ethanol. The most prevalent monosaccharides in cellulose, hemicellulose, and 
pectin are in underlined uppercases. Phosphate groups in each molecule are represented by “P”. The acronym PPP stands for the pentose-phosphate pathway.
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Similarly, Joshi et al. (2015) obtained 41 g/L of ethanol from 380 g/L of 
total carbohydrate after a 48-h fermentation with an inoculum size of 
20% (v/v) with the strain Saccharomyces cerevisiae NCIM3495. How-
ever, despite the high ethanol titer achieved, it should be noted that the 
amount of available sugar could have rendered an even higher amount 
of the final product. The same holds for the results found by Jha et al. 
(2019), whose fermentations did not allow more than 50% of the sugar 
available to be consumed, and by Vadalà et al. (2023), who observed that 
~14% of citrus-waste hydrolysate sugar content was not consumed by 
yeast cells. This incomplete sugar conversion is probably due to the inca-
pacity of S. cerevisiae to ferment many of the orange biomasses’ sugars.  
Fortunately, many strategies to overcome this issue have been devel-
oped, as addressed in section 4.

Xylitol production
Among sugars found in orange wastes, D-xylose is one of the most 

well-studied. As well as other monosaccharides, xylose initially needs 
to be transported from the extracellular environment to the interior 
of yeast cells to enable fermentation. Once inside the cell, this pentose 
must be reduced to xylitol, which is then oxidized to xylulose before 
following the PPP (Figure 2). However, for yeast cells to efficiently fer-
ment xylose, there must be a redox balance in these first two reactions 
of xylose metabolization, which are catalyzed by Xylose reductase (XR) 
and Xylitol dehydrogenase (XDH), respectively. While the latter uses 
NAD+ as a coenzyme (which is reduced to NADH), the former can 
make use of both NADH and NADPH (which are oxidized to NAD+ or 
NADP+), depending on the isoenzyme present. In those yeasts whose 
XR uses a coenzyme different from XDH, an imbalance may interrupt 
the metabolization of xylose so that yeast cells end up accumulating 
xylitol (Alves Júnior et al., 2022).

Xylitol is a five-carbon polyol classified as a natural sweetener 
(Lenhart and Chey, 2017). Therefore, this compound can also be 
applied in areas of extreme importance for human subsistence, 
such as the food and pharmaceutical industries (Kumar et  al., 
2022). It also helps prevent cavities, osteoporosis, and infections, 
and there are also reports of anti-cancer effects (Xu et al. 2019; He 
et al. 2021).

The demand in the xylitol market is growing, requiring this prod-
uct to be obtained in a sustainable and economical way, as it is pro-
duced by the chemical hydrogenation of xylose, which is extreme-
ly expensive (Grembecka et  al., 2014). To reduce high costs, several 
biotechnological methods for generating xylitol from lignocellulosic 
and pectic biomass from fruit waste have been studied (Mathew et al., 
2018). Many wild yeasts have the potential to accumulate xylitol from 
the xylose available to the cells. In fact, since several yeasts display the 
redox imbalance mentioned above, yeast-based xylitol production may 
become a trend in the biorefinery context (Tadioto et al., 2022; Albarel-
lo et al., 2023; Vargas et al., 2023).

Organic acids
Organic acids are a group of mostly weak acids whose solubility in 

water relies on the size of their hydrocarbon chain (the smaller the par-
ticle size, the easier it is to dissolve). They can be produced naturally by 
the living beings. These acids are high-value-added products with im-
portant applications in the food, pharmaceutical, and chemical indus-
tries. The impacts of producing these compounds, which are primarily 
made from fossil resources, have instigated the development of bio-
technological routes, since they are more sustainable, less harmful to 
the environment, and economically more viable than the conventional 
method. Metabolic engineering and synthetic biology are biotechno-
logical tools employed to develop high-performance microorganisms 
capable of producing organic acids with elevated conversion rates (Du 
et al., 2011; Liu et al., 2017).

The microbial production of organic acids has some obstacles in its 
synthesis, as bacteria are normally not tolerant to low pH conditions, 
which often makes industrial processes very costly. Yeasts naturally 
have greater resistance to acidic pH, but their yield in the process is 
lower. As a result, several studies have been seeking a more sustainable 
way to produce organic acids, and one of the ways is to use fruit waste 
as biomass as feedstocks (Hong et al., 2012; Tran and Zhao, 2022).

Some examples of organic acids that are part of the wide range of 
chemical products in different types of industries are Citric Acid (used 
as a food additive), Lactic Acid (production of polymers, drinks, and 
foods), Acetic Acid, better known as vinegar (solvent and polymers), 
Succinic Acid (as building blocks and as a replacement for anhydrous 
maleic acid), Oxalic Acid (complexing agent) among many others. 
Most studies present the production of these compounds using the 
yeast S. cerevisiae (Panda et al., 2016).

Phenolic compounds
Phenolic compounds are described as bioactive substances, that is, 

compounds that provide health benefits and are present in different 
fruits and vegetables. The quantity and structure of these compounds 
vary according to the plant matrix, being more present in fruit seeds 
than in their edible portions (Soong and Barlow, 2004; Rabetafika 
et al., 2014). In foods and beverages, phenolic compounds are directly 
linked to attributes such as color, bitterness, astringency, aroma, and 
oxidative stability (Angelo and Jorge, 2007).

One of the options for managing fruit processing industry waste is 
the recovery of bioactive compounds in the byproducts. Oranges stand 
out due to their high global consumption and a significant amount of 
bioactive compounds such as hesperidin, naringin, naringenin, and 
quercetin — substances that can be applied in the food, cosmetic, and 
mainly pharmaceutical industries (Madeira and Macedo, 2015; Fier-
ascu et al., 2020). Among these compounds, flavonoids constitute the 
main subgroup, and their antioxidant activity has been reported in sev-
eral studies (Jayaprakasha et al., 2001; Soong and Barlow, 2004; Babbar 



Minussi, G.A. et al.

6

Revista Brasileira de Ciências Ambientais (RBCIAMB) | v.59 | e1859 | 2024

et  al., 2015; Romero-Díez et  al., 2018). The flavonoids most present 
in citrus fruit residues are naringin and hesperidin, presenting many 
health benefits such as the ability to prevent cancer, suppress carcino-
genesis, and induce cell apoptosis (Meiyanto et al., 2012).

Fruit waste has a highly diverse microbiota. Yeasts have been iso-
lated from these substrates and are applied in fermentation processes 
precisely on these residues, as they can metabolize the available carbo-
hydrates and generate distinct phenolic compounds (Noori et al., 2022; 
Makopa et  al., 2023). Bioactive compounds are naturally present in 
fruits, so just consuming them is beneficial for people. However, stud-
ies have reported that the bioaccessibility (absorption capacity of the 
human body’s gastrointestinal system) of these compounds is higher 
after yeast fermentation, facilitating their access to systemic circula-
tion. With this in mind, scientists are working to ensure that these mi-
croorganisms act on waste recovery to increase the production of phe-
nolic compounds (Stinco et al., 2020; Coelho et al., 2021; Macêdo et al., 
2023). Indeed, the growing demand for these compounds cannot be 
supplied by purifying them from plant sources, requiring larger-scale 
production, which can be fulfilled through the fermentation of wastes 
by yeast (Tadioto et al., 2023).

Pectin Oligosaccharides
Although the complete hydrolysis of a given polysaccharide is 

usually the primary goal (once free monosaccharides are more easily 
converted into fermentation products), sometimes a partial depolym-
erization may be desirable. This is the case of Pectin Oligosaccharides 
(POSs), which are obtained through incomplete pectin hydrolysis pro-
cesses. Depending on the pectin source, POSs may include products 
such as oligogalacturonides, galactooligosaccharides, arabinooligosac-
charides, rhamnogalacturonooligosaccharides, and arabinogalactoli-
gosaccharides (Concha Olmos and Zúñiga Hansen, 2012; Gullón et al., 
2013; Gómez et al., 2016).

Because of their lower mass and lower degree of polymerization, 
POSs display better water solubility and, consequently, higher bioavail-
ability than natural pectin (Kong et al., 2023). In fact, recent papers have 
shown different human health benefits after POSs consumption, name-
ly prebiotic effect and antioxidant and anti-inflammatory properties. 
Since they can be metabolized by beneficial gut bacteria, POSs stimulate 
these microorganisms’ growth, which improves the host immune system 
(Babbar et al., 2016; Montilla et al., 2022). POSs have also been linked 
to improvements in cholesterol and glucose blood levels, toxins bind-
ing and removal, and anticancer and antimetastatic effects (Minzanova 
et al., 2018; Zhu et al., 2019; Singh R.P. et al., 2020; Zaitseva et al., 2020).

Interestingly, yeast can also work in the production of POSs 
through their pectin lyases, which cleave pectin glycosidic bonds at the 
fourth carbon, releasing hydrogen from the fifth carbon, and producing 
unsaturated 4,5-unsaturated oligogalacturonides (Yadav et al., 2023). 
Pectin lyase activity has been reported in the following yeast species: 

Pichia pinus (Moharib et al., 2000), Cystofilobasidium capitatum (Nak-
agawa et al., 2005), Kluyveromyces wickerhamii, Stephanoascus smithi-
ae, Pichia anomala (da Silva et al., 2005), Wickerhamomyces anomalus, 
Saccharomycopsis fibuligera, and Pichia kudriavzevii (Haile and Kang, 
2019). Additionally, genetically-engineered Pichia pastoris strains have 
shown to be well-succeeded in POS production, yielding oligogalactu-
ronides (Yang et al., 2020) and rhamnogalacturonan (Normand et al., 
2012) as major products.

Besides Pectin: Hemicellulose and Cellulose Exploration
In addition to the abundant pectin structure found in orange 

waste, there is a broader scenario where cellulose and hemicellulose 
structures can be explored. These structures constitute the matrix of 
the waste (Figure 1), and offer potential for conversion into bioprod-
ucts of interest, expanding the possibilities beyond pectin (Patsalou 
et al., 2020; Tsouko et al., 2020). For example, Patsalou et al. (2020) in-
vestigated the conversion and recovery of four bioproducts from citrus 
waste: essential oils, pectin, succinic acid, and fertilizer.

In this situation, the remaining solids rich in hemicellulose and cel-
lulose can be recovered and utilized as raw material in other integrated 
pathways. The composition is abundant in sugars such as glucose, xy-
lose, and arabinose, which can be converted into high and medium val-
ue-added bioproducts. These integrated conversion scenarios are note-
worthy in the industrial sector due to the volume and characteristics of 
the waste generated. Citrus waste, owing to its high carbohydrate and 
low lignin content, can be exploited for the production of biofuel and 
bioproducts without requiring pretreatments with high concentrations 
of chemicals and substantial energy consumption. Consequently, pec-
tin-free solid waste can be used to produce food additives, organic ac-
ids, biofuels, and agricultural inputs. Thus, assessing consecutive routes 
for producing bioproducts from this waste can be an approach to make 
these processes economically viable on a large scale.

Oligosaccharides can be derived from the hydrolysis of the hemi-
cellulose structure present in orange waste. Similarly to what has been 
described above for POSs, these hemicellulose-derived oligosaccha-
rides are prebiotics of significant interest in the food industry and can 
be prepared through autohydrolysis, acid hydrolysis, or enzymatic hy-
drolysis of the hemicellulose-rich fraction (Cho et al., 2020; Martins 
and Goldbeck, 2023). Therefore, following the extraction of pectin, it 
is feasible to explore this conversion route. The hydrothermal process 
for extracting the pectin structure has been previously reported to pre-
serve 60% of the xylan content, enabling enzymatic conversion to xy-
looligosaccharides (XOS). This process also facilitates the conversion 
of solid waste into energy, allowing for the design of a self-sufficient 
plant in accordance with the principles of the circular economy and 
biorefineries (Martins and Goldbeck, 2023).

The utilization of this waste in the biofuel production chain is a viable 
strategy, primarily due to the high carbohydrate that remains in the solid 
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residue. Biohydrogen, biogas and ethanol are among the most explored 
processes. Saadatinavaz et  al. (2021) evaluated citrus waste for possible 
production routes of biomethane, acetone, butanol, biohydrogen, ethanol, 
acetic acid, and butyric acid. Hydrothermal pretreatment unit operations 
were common to all routes, and under optimized conditions, the estimate 
was a production of 4,560 kJ of energy through sustainable processes 
(Saadatinavaz et al., 2021). Additionally, in an integrated context, pectin, 
bioethanol, and methane were produced from citrus waste, enhancing the 
total economic value of the products by 75 times compared to the approach 
of managing the waste solely for anaerobic digestion (Vaez et al. 2021).

In addition to bioenergy, the pectin-free solid residue can be ex-
ploited for conversion into various bioproducts. Recently, researchers 
utilized these residues to produce natural red colorant using the fungus 
Talaromyces amestolkiae (titer 2.75 g/L) (Lima et al., 2023). The enzy-
matic production of xylanases and cellulases was also evaluated, offer-
ing a potential route for recovery (Lima et al., 2023). Another inno-
vative approach for this waste involves its conversion into bioplastics. 
A recent study explored this scenario using a cyanobacterial culture, 
demonstrating that citrus waste hydrolysates could serve as an alter-
native culture medium for polyhydroxybutirate (PHB) accumulation 
(Mishra and Panda, 2023). Arabino-oligosaccharides, glucose-rich 
hydrolysate, and polylactic acid (PLA) have also been successfully ob-
tained from different fractions of citrus waste (tangerine peel) (Jang 
et al., 2022). Additionally, bacterial cellulose has been obtained from 
pectin-free citrus waste, with the remaining solid predominantly com-
posed of cellulose and hemicellulose (Tsouko et  al., 2020). Alterna-
tively, non-biological conversion processes, such as the development 
of biofilms using residual pulp and peels post hydrothermal pre-treat-
ment of the waste, have been explored as well (Santos et al., 2023).

Integrating processes to obtain various bioproducts presents an 
interesting alternative for orange waste. After pectin removal, the re-
maining solids, typically rich in cellulose and hemicellulose, offer end-
less possibilities. Whether through thermal, chemical, or enzymatic 
hydrolysis, these pathways can provide alternative routes for obtaining 
a diverse range of bioproducts and bioenergy. The scalability of these 
processes on an industrial level not only reduces waste generation but 
also establishes ecologically sustainable processes.

Improving Bioconversion from Pectin-Rich Wastes
Despite the vast potential of orange waste as feedstock for multi-

product biorefineries, some challenges must be overcome to achieve 
highly efficient conversion of orange residues into valuable products. In 
this sense, the biotechnology field displays some tools that may offer im-
proved alternatives according to the bioprocess aim. Interestingly, many 
of these improvements can be reached by engineering or prospecting 
the biocatalysts. The following sections address some of these strategies, 
considering yeasts as the main employed biocatalyst. It should be noted, 
though, that due to the limitation of optimization studies with oranges, 

other fruits were considered in this review, considering that they are all 
plant-waste material and pectin-rich biomasses. Thus, we are assuming 
that these similarities allow us to extrapolate many of the advances ob-
tained with other fruits’ waste to the orange residue scenario.

Yeast genetic and metabolic engineering
One of the fields where genetic engineering is heavily exploited is the 

development of robust strains for biofuel production. Plant-residual bio-
masses are widely available renewable resources and viable alternatives 
for the development of biorefinery processes. However, a pretreatment 
step is essential to break the recalcitrant structure of these biomasses into 
cellulose, hemicellulose, and pectin in order to improve enzyme access 
and saccharide solubilization. This initial stage leads to the formation of 
inhibitory compounds, which include weak acids and furan aldehydes 
(Vanmarcke et al., 2021). In this sense, to ensure a sustainable process, 
integrating research has been developed to identify determinants of tol-
erance, (over)expression of genes involved in the tolerance response, and 
the use of a robust microorganism capable of tolerating these stressors, 
which includes genetic engineering (Baptista et al., 2021). Noteworthily, 
Cámara et al. (2022) carried out a huge data mining process of S. cerevisiae 
mutants (designed to increase tolerance to inhibitory compounds) that led 
to overexpression or deletion of approximately 4,000 unique genes, mostly 
for tolerance to compounds such as acetic acid, formic acid, and furans.

In addition to being used to improve tolerance to inhibitory com-
pounds, genetic engineering has also been applied to enable yeast to 
metabolize different components (generated during the lignocellulosic 
biomass pretreatment and hydrolysis steps) that are not directly uti-
lized by most yeasts — e.g., S. cerevisiae and the non-assimilation of 
pentoses like xylose (van Maris et al., 2006; Moysés et al., 2016). In fact, 
in the ethanol industry, the co-fermentation of pentose and hexose by 
simultaneous saccharification processes and microbial metabolism is 
an important strategy to improve ethanol production yields and ensure 
the development of a competitive and economically viable second-gen-
eration biorefinery (Liu et al., 2022).

Saccharomyces cerevisiae is the model industrial microorganism 
used to produce ethanol. For this reason, it is generally used as an ideal 
host cell for genetic engineering to perform simultaneous assimilation 
of glucose and other sugars (Wang et al., 2018). In addition, S. cerevisi-
ae is generally recognized as a safe (GRAS) organism, which enables it 
to be widely used for pharmaceuticals and food. Thus, it ends up being 
the most commonly used yeast to produce these compounds and in ap-
plications as a host for metabolic engineering strategies (Pereira et al., 
2019; Feng et al., 2022). This can be seen from the studies presented in 
Table 1. Not limited to S. cerevisiae, other microorganisms have also 
been reported as hosts for metabolic engineering because they exhibit 
characteristics like high tolerance to fermentation inhibitors, act under 
low pH conditions, and are more tolerant to high temperatures, such as 
the Issatchenkia orientalis (Lee et al., 2022).
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Table 1 – Metabolic and genetic engineering strategies for production of high value-added chemicals from pectin-derived sugars.

Compound Yeast Strategies Substrate/Residue Main results Reference

Ethanol S. cerevisiae

Implementation of nine repair 
fragments to establish the fungal 

d-GalUA pathway using CRISPR/
Cas9 in the reference strain Gly 

(able to utilize glycerol efficiently 
via a NAD-dependent pathway)

Minimal medium 
with galacturonic 

acid (the main pectic 
sugar) and glycerol

Maximum specific galacturonic acid 
consumption rate of 0.23 g gCDW

-1 h-1

 0.48 ± 0.06 C-mol C-mols
-1  

ethanol yield

Perpelea et al. 
(2022)

Phenylalanine

Indigenous 
yeast and S. 
cerevisiae 
AWRI796

Yeast was exposed to toxic 
phenylalanine analogs

Chardonnay grape 
juice

ARO4 and TYR1 mutations – 
20-fold increase in 2-phenylethanol 

and 2-phenylethyl acetate production

Cordente 
et al. (2018)

Oligogalacturonides Pichia pastoris

The gene (GAQ40478.1) encoding 
endo-polygalacturonase (AnPG28A) 
from Aspergillus niger was expressed 

in P. pastoris

Mandarin and 
orange peel wastes

The best oligogalacturonides yield 
were 26.1%.

Yang et al. 
(2020)

Ethanol S. cerevisiae
Industrial strain with CRISPR-Cas9-

directed integration of cellulase 
genes

Orange peel
Ethanol

yields: 7.53 g L-1 and 0.151 g g-1 

orange peel

Yang et al. 
(2018)

As the polymeric matrix of pectin has a complex structure, 
pectin-rich residues present particular challenges in hydrolysis 
and fermentation. Depending on the pretreatment and hydrolysis 
process, d-galacturonic acid is one of the quantitatively most abun-
dant monomers, negatively affecting yeast growth and fermentation 
(Martins et  al., 2020; Perpelea et  al., 2022). Given these consider-
ations, the use of d-galacturonic acid in S. cerevisiae has been the 
focus of some recent studies (Protzko et  al., 2018; Perpelea et  al., 
2022). An engineered strain was able to consume d-galacturonic 
acid with the reported maximum specific rate of 0.23 g gCDW

-1 h-1 
in minimal synthetic medium when glycerol was added under aer-
obic conditions. Adding glycerol in pectin-rich hydrolysates was 
seen to bring an additional advantage by increasing the available 
carbon that can be converted into ethanol. It was shown that eth-
anol production from the co-fermentation of d-galacturonic acid 
and glycerol is a realistic opportunity, given the yield obtained from 
this strategy (0.48±0.06 C-mol C-molsubstrate

-1) (Perpelea et al., 2022). 
Furthermore, S. cerevisiae has also been modified to directly fer-
ment orange peel extract, through the expression of a cellulase com-
plex (Yang et al., 2018).

As the production of ethanol from lignocellulosic biomass has 
already been commercialized, research has been developed to ex-
pand the use of the substrate and to produce chemical compounds 
in addition to ethanol, such as organic acids (Perpelea et al., 2022; 
Stovicek et  al., 2022). Dicarboxylic acids for example, are found at 
very low levels as yeast products. However, the concentrations can 
be improved by using metabolic engineering. Metabolic engineering 
strategies lead to relevant yields of dicarboxylic acids (malic and suc-
cinic acid) from xylose as a carbon source (Kang et al., 2022; Stovicek 
et al., 2022).

The development of cell factories has been created either as 
alternative routes to the chemical ones or to improve the efficien-
cy of biochemical pathways naturally present in microorganisms. 
For example, the production of gastrodin — a phenolic glycoside 
— was achieved using S. cerevisiae as a host of a compatible gly-
cosyltransferase that recognizes 4-hydroxybenzyl alcohol as a sub-
strate, and then applying a simultaneous chromosomal integration 
strategy of CARsyn, PPTcg-1syn, AsUGTsyn, ubiCsyn, and ARO4K229L 
into the yeast chromosomal rDNA. The authors demonstrated that 
the engineered strain produced a much higher level of gastrodin 
(175 times more than the original gastrodin-producing strain) (Yin 
et al., 2020).

Metabolic engineering can also be an interesting strategy in phe-
nolic production when challenges surround the scaling-up by natu-
ral biochemical pathways. This is the case of resveratrol production, 
a polyphenolic compound of great importance mainly in the medical 
field and health products (Feng et al., 2022). Efforts have been made 
to develop cell factories capable of efficiently producing these com-
pounds, as in the study conducted by Li et al. (2016), which applied the 
pull-push-block metabolic engineering strategy for overexpression of 
the resveratrol biosynthesis pathway in S. cerevisiae, resulting in a con-
centration of 800 mg L-1 of the compound in fed-batch fermentation 
using glucose as substrate. More recently, other strategies have been 
applied to yeasts such as Yarrowia lipolytica, which is a versatile yeast 
applied to the production of organic acids, and whose metabolic engi-
neering has been demonstrated to be able to increase levels of phenolic 
compounds (Gu et al., 2020; He et al., 2020; Sáez-Sáez et al., 2020; Yuan 
et al., 2020).

Another efficient possibility of increasing yeast resistance to in-
hibitor compounds is applying laboratory adaptive evolution. This ap-
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proach approximates a process of evolution by natural selection 
through the application of restrictive conditions for microbial propa-
gation in the laboratory, inducing the expression of a phenotype best 
suited to the hostile environment (Barrick and Lenski, 2013; Menegon 
et  al., 2022). It was recently reported that exposure of yeast to toxic 
phenylalanine analogs induced mutation in two genes of the aromatic 
amino acid biosynthetic pathway, ARO4 and TYR1, leading to overpro-
duction of 2-phenylethanol and 2-phenylethyl (Cordente et al. 2018).

Thus, although little explored, metabolic engineering and labo-
ratory adaptive evolution will progressively allow the construction of 
more robust strains for application in industrial flows. This scenar-
io may expand the variety of chemicals produced, making microbial 
cells economically feasible for integrated biorefinery systems (Baptis-
ta et al., 2021).

Indigenous yeasts on fruits: transforming their  
substrate into bioproducts

Many species have already been isolated from different environ-
ments, and represent a still little-explored resource, offering innovation 
for biotechnological development in several fields (Nandal et al., 2020). 
Indigenous microorganisms from diverse environments may present 
interesting characteristics for industrial processes, and it is of scientific 
interest to explore biological resources that enable the development of 
new strategies. Many researchers examine and characterize different 
yeast species that exhibit relevant characteristics, such as high toler-
ance to the saline environment, toxic compounds, high temperatures, 
and high substrate concentration, and that can produce certain bio-
products with high efficiency. In this context, when it comes to plant 
environments, yeast isolation may lead to the effective production of 
volatile organic compounds (Fenner et al., 2022).

There is a wide diversity of microorganisms inhabiting fruits and 
vegetables, which are interesting substrates for yeast prospecting. 
In fact, among the microorganisms indigenous to these environments, 
yeasts are the dominant populations (105 a 107 CFU g-1) (Pimentel et al., 
2021). These microorganisms play an important role in ecological re-
lationships, which explains their abundance in these environments.  
Considering the prospection of fruit-dwelled yeasts, it is possible to 
explore the products resulting from these ecological relationships that 
can be highly lucrative, mainly by the fermentative capacity and metab-
olite production of commercial interest (Pimentel et al., 2021; Fenner 
et al., 2022). In addition, fermentative processes conducted by indig-
enous yeasts can result in better adaptation to environmental factors 
as well as enhanced volatile compound profiles (Macêdo et al., 2023).

The increase in studies isolating yeast to produce volatile com-
pounds and other bioproducts has been essential for the understand-
ing of genetic diversity, as well as for the advances in the consolida-
tion of commercial products, which is mainly directed to the food 
and beverage field (Amorim et al., 2018; Rêgo et al., 2020; Pimentel 

et  al., 2021; Macêdo et  al., 2023). Besides, the production of vola-
tile organic compounds from yeast has also been widely evaluated 
as a biocontrol mechanism in agriculture. Several yeast species iso-
lated from fruit exhibited the potential to control pathogenic fungi 
through the production of volatile organic compounds (see Table 2). 
As noted, the recovery of these compounds can be valuable for a wide 
range of applications.

Besides the relevance of yeast prospecting for the knowledge of 
the role of flavorings produced in food or the mechanism of action in 
biocontrol, the difference in the diversity of microorganisms is also a 
factor that affects the performance of autochthonous yeasts when used 
on substrates from which it was isolated. It has been demonstrated 
that yeast performance is enhanced when using fermentation media 
that have similarity to the source of the natural habitat of these or-
ganisms (Pimentel et al., 2021; Macêdo et al., 2023), as it is the case of 
fruit residues. Moreover, the microorganisms present in the residues 
can be different with the change of the environment, being strongly 
dependent on intrinsic parameters, such as carbohydrate and protein 
content and pH, and extrinsic parameters, such as climatic conditions 
and harvesting periods (Pimentel et  al., 2021). In summary, there 
is a scenario where yeasts isolated from fruit and fruit residues are 
currently related to the identification of flavorings in food and bev-
erage (mostly) and biocontrol in agriculture. Fortunately, this can be 
exploited in bioprocesses by fermentation of orange wastes to recover 
volatile organic compounds, providing a wide range of opportunities 
for biotechnology expansion.

Recently, Macêdo et al. (2023) evaluated the yeasts Hanseniaspora 
opuntiae and Issatchenkia terricola, isolated from umbu-cajá, and H. 
opuntiae, isolated from soursop, in the fermentation of soursop and 
umbu-cajá pulp. Higher metabolic activity of the yeast strains was 
observed in the media produced with the fruit pulps from which the 
yeasts were isolated. All strains were able to ferment the pulp, increas-
ing the production of acetic acid and the concentration of phenolics 
(Macêdo et al., 2023).

Another interesting result for the production of volatile com-
pounds by yeast isolated from fruits was presented by Rêgo et  al. 
(2020), which demonstrated that fermentation can be directed to the 
production of specific volatile compounds from indigenous yeasts in 
cashew juice. When co-inoculating Torulaspora delbrueckii and Han-
seniaspora opuntiae with Saccharomyces cerevisiae, the production of 
2-propenoic acid and 3-phenyl-ethyl ester was detected, whereas this 
compound was not observed in simple fermentation (only with S. cer-
evisiae). The manuscript also identified 18 other volatile compounds 
from the mentioned yeasts in simple fermentation and co-fermenta-
tion (Rêgo et al., 2020). These results supported the proposition that 
autochthonous microorganisms may be more adapted to the matrix 
and better able to carry out fermentative processes (Pimentel et  al., 
2021), being interesting in the prospection for industrial expansion.
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Table 2 – Recent studies evaluating the production of volatile compounds by yeasts isolated from fruit, with their respective applications.

Yeast Isolation site Target compound Application Reference

Aureobasidium pullulans
The surface of 

‘Redhaven’ peaches 
(Italy)

1-Propanol, 2-methyl
1-Butanol, 3-methyl
Butanoic acid, 2-oxo

Limonene
Phenethyl alcohol

Biocontrol of 
postharvest fungal 

pathogens

di Francesco et al. 
(2015); Mari et al. 

(2012)

Clavispora lusitaniae AgL21 Lemon Packinghouse
(Argentina)

Ethyl acetate
Isoamyl acetate

3-methyl butanol
Phenethyl alcohol

Biocontrol of fungal 
pathogens

Pereyra et al. (2021, 
2022)

Hanseniaspora vineae Cashew apple fruit
(Brazil)

Octanoic acid
β-farnesene

Decanoic acid
2-phenyl acetate
Acetophenone

Acetic acid

Production of cashew 
wine Rêgo et al. (2020)

Hanseniaspora opuntiae

Soursop and umbu-
cajá

(Caatinga Biome 
fruits, Brazil)

Ethanol
Acetic acid

Succinic acid
3-methyl-1-butanol

α-terpineol
Aldehyde

Isobutyric acid

Produce fermented 
pulps Macêdo et al. (2023)

Meyerozyma caribbica Pineapple pulp and 
peel

Gallic acid
Catechin

Ferulic acid
Vanillin

Resveratrol
Coumaric acid

Functional fermented 
beverage

Amorim et al. 
(2018)

Sporidiobolus pararoseus 
YCXT3

Healthy leaf of 
strawberry

(China)

2-ethyl-1-hexanol
2-hexyl-1-decanol, 2,6,10-trimethyl-dodecane

Pentadecane
Tetradecane

1-chloro-octadecane

Biocontrol of 
postharvest fungal 

pathogens
Huang et al. (2012)

Torulaspora delbrueckii  Cashew apple fruit
(Brazil)

Isoamyl alcohol
Phenylethyl alcohol

Decanoic acid
3-methyl-1-pentanol

Dodecanoic acid
Acetic acid

Benzoic acid

Production of cashew 
wine Rêgo et al. (2020)

Wickerhamomyces 
anomalus Disva 2 Grape berry surface

Ethyl acetate
Ethyl butyrate

Isoamyl acetate
Ethyl hexanoate

Isobutanol
Amylic alcohol
Isoamyl alcohol

Biocontrol of 
postharvest fungal 

pathogens

Oro et al. (2014, 
2018)

Pichia galeiformis BAF03 Lemon fruit surface 
(China)

Ethanol 
Acetic acid 

3-methyl-1-butanol
3-methyl-1-butanol acetate

Benzaldehyde
Pentyl propanoate 

Benzeneacetaldehyde 
Phenylethyl alcohol

Biocontrol of citrus 
green mold (Penicillium 

digitatum)
Chen et al. (2020)

Continue...
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Laboratory, semi-industrial, and industrial scale experiments
Several laboratory experiments have been developed to i. opti-

mize industrial conditions, ii. enable technology transfer, and iii. 
ensure the production of chemicals in an integrated manner at the 
commercial level. It should be noted that, in addition to the efforts to 
optimize processes with different waste biomasses, there is a need to 
bring laboratory research closer to industrial demands. To this end, 
numerous efforts have been made to develop microbial cell factories 
to drive scaling-up.

Moreover, it is necessary to consider the concentration of the final 
product for the industry reality. For example, terpenoid production 
carried out in batch fermentations is at mg L-1, which has no commer-
cial significance. On the other hand, fermentation in a bioreactor with 
a fed-batch mode of operation can provide titers on the grams per li-
ter scale and higher yields (Carsanba et  al., 2021). For this purpose, 
the industrial production of compounds, e.g., terpenoids, is conduct-
ed in fed-batch mode, as it combines advantages of both batch and 
continuous fermentation modes. Fed-batch in 2 L bioreactors con-
ducted simulating the industrial process of β-farnesene production 
by Amyris Inc. using a recombinant S. cerevisiae strain resulted in 
yields above 97% after a six-days fermentation (Carvalho et al., 2022). 
The same discussion can be extended to phenolics, such as resveratrol.  
Recently, in a fed-batch process, concentrations of approximately 800 
mg·L-1 were achieved with glucose and ethanol as substrate using the 
strain S. cerevisiae ST4990 (Li et al., 2016).

Strategies to optimize the production of high-value-added com-
pounds are also explored, either by adapting fermentative processes 
(e.g., co-culture) or operationalization. It has been demonstrated that 
co-fermentation methods can improve other processes, such as with in-
digenous yeasts (Hanseniaspora guilliermondii) and S. cerevisiae, which 
in co-culture significantly improved the content of polyphenols and 
aromatic compounds (Xu et al., 2022).It is important to highlight that 
xylitol is already a large-scale product, being mostly produced from 

lignocellulosic biomass and chemical routes (Grand View Research, 
2017). However, in recent decades, biological routes have gained 
ground in industries, and research efforts have driven these advances. 
For instance, to produce xylitol from lignocellulosic biomass using bi-
ological route, the yeast S. cerevisiae PE-2-GRE3 (yeast engineered for 
xylitol production, with overexpression of GRE3 gene from Pichia stip-
itis) and an enzyme cocktail of cellulases and hemicellulases were used 
in simultaneous saccharification and fermentation process and showed 
interesting conversion results (Baptista et al., 2020). In addition to en-
gineered organisms, native yeasts have been identified and evaluated 
for their ability to accumulate xylitol, especially yeasts of the genera 
Spathaspora and Scheffersomyces, which have been essential to promote 
advances in the fermentation and production processes in single or 
co-culture, besides enabling the identification of genes of interest for 
metabolic engineering (Hickert et al., 2013; Farias and Maugeri-Filho, 
2021; Neitzel et al., 2022; Scapini et al., 2022).

Conclusion
The most significant and recent findings about the biotechnolog-

ical potential of orange wastes, as low-cost feedstocks, and yeasts, as 
a microbial cell factory, were highlighted in this review. Although for 
decades yeasts have shown an impressive competence in being geneti-
cally engineered, we showed that nature on its own can offer us indige-
nous strains with the ability to produce the most distinct and valuable 
bioproducts. This has been the case of fruit-isolated yeasts, which nat-
urally work as fruit-decomposing microbes, thus showing an innate 
capacity to consume and transform residual biomasses.

According to the literature reviewed, at least twenty-one yeast spe-
cies isolated from natural environments are capable of being employed 
in citrus-waste-based biorefineries. Cellulose, hemicellulose, and pec-
tin hydrolysates have sugars that can be transformed into ethanol, xy-
litol, and volatile organic compounds by those yeasts. Moreover, in a 
multiproduct context, biorefineries may concomitantly produce bioac-

Table 2 – Continuation.

Yeast Isolation site Target compound Application Reference

Pichia fermentans JT-1-3

Soil of research center 
(China) for citrus 
fruits (orange and 

lemon) 

3-methyl-1-Butanol
2-methyl-1-Butanol
Phenylethyl Alcohol

Ethyl 9-hexadecenoate
Linoleic acid ethyl ester

4-ethyl-2-methoxy-Phenol
4-ethyl-Phenol

Limonene

Production of kiwifruit 
wine Zhong et al. (2020)

Candida parapsilosis strains 
(IFM 48375 and NRRL 
Y-12969)

Orange bagasse 
(Brazil) Ethanol

Fermentation of Citrus 
Pulp of Floater (an 
industrial residue

from manufacturing of 
orange juice)

Cypriano et al. 
(2018); Tsukamoto 

et al. (2013)
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