Soil-cement blocks: a sustainable alternative for the reuse of industrial solid waste

Main Article Content

Tulane Rodrigues da Silva
Daiane Cecchin
Afonso Rangel Garcez de Azevedo
Jonas Alexandre
Izabella Christynne Ribeiro Pinto Valadão
Nivam Alves Bernardino
Dirlane de Fátima do Carmo
Patrícia Ferreira Ponciano Ferraz

Abstract

This study aimed to analyze potential industrial solid waste that can be added to soil-cement blocks. A narrative literature review was conducted in the Scopus academic database, using as the search criteria keywords related to the topic, such as soil-cement, building materials, soil-cement blocks, soil-cement bricks, physical and mechanical properties, solid waste, life cycle analysis, and civil construction. A variety of industrial solid waste that can be incorporated into soil-cement blocks was observed, such as waste rock, sludge from water treatment plants, wood sawdust, polyethylene terephthalate fibers (PET), vegetable fibers from loofah, hemp fibers, rice husks, brachiaria grass, poultry eggshells, sugar cane bagasse, wheat and barley straw, welding slag, foundry sand, waste from quartzite mining, construction, and demolition, mechanical turning, pulp industry grains, and steel mill co-products. Among the investigated wastes, those that improved the physical and mechanical properties of the soil-cement blocks were grains from the cellulose industry, rice husks, Brachiaria grass, steel by-products with granulated soil-cement blocks and blast furnace slag. The waste that produced no satisfactory results was sludge from a water treatment plant, sugarcane bagasse, and vegetable loofah. Through this research, it was possible to verify that the behavior of soil-cement blocks is influenced by several factors in their manufacture, mainly regarding the type and percentage of incorporated waste. However, it is important to be concerned with its application in waste blocks so as not to increase the environmental impacts in the long term.

Article Details

How to Cite
da Silva, T., Cecchin, D., de Azevedo, A., Alexandre, J., Valadão, I., Bernardino, N., do Carmo, D., & Ferraz, P. (2021). Soil-cement blocks: a sustainable alternative for the reuse of industrial solid waste. Brazilian Journal of Environmental Sciences (Online), 56(4), 673-686. https://doi.org/10.5327/Z21769478956
Section
Articles

References

Al-Fakih, A.; Mohammed, B.; Liew, M.S.; Nikbakht, E., 2019. Incorporation
of waste materials in the manufacture of masonry bricks: an update review.
Journal of Building Engineering, v. 21, 37-54. https://doi.org/10.1016/j.
jobe.2018.09.023.
Al-Jabri, K.S.; Hago, A.W.; Sthapit, G., 2017. Properties of soil-cement
blocks manufactured using produced water from oil fields: a preliminary
investigation. International Journal of Geomate, v. 13, (35), 66-72. http://
dx.doi.org/10.21660/2017.35.6671.
Anjum, T.; Khan, H.I.; Shauket, I., 2017. Production of soil-cement bricks
using sludge as a partial substitute. Earth Science Malaysia, v. 1, (2), 10-12.
http://dx.doi.org/10.26480/esmy.02.2017.10.12.
Araújo, C.; Salvador, R.; Piekarski, C.; Sokulski, C.; Francisco, A.; Camargo,
S., 2019. Circular economy practices on wood panels: a bibliographic analysis.
Sustainability, v. 11, (4), 1057. https://doi.org/10.3390/su11041057
Arrigoni, A.; Grillet, A.-C.; Pelosato, R.; Dotelli, G.; Beckett, C.T.S.; Woloszyn,
M.; Ciancio, D., 2017. Reduction of rammed earth’s hygroscopic performance
under stabilization: an experimental investigation. Building and Environment,
v. 115, 358-367. https://doi.org/10.1016/j.buildenv.2017.01.034.
Ashour, T.; Korjenic, A.; Korjenic, S.; Wu, W., 2015. Thermal conductivity
of unfired earth bricks reinforced by agricultural wastes with cement and
gypsum. Energy and Buildings, v. 104, 139-146. https://doi.org/10.1016/j.
enbuild.2015.07.016.
Associação Brasileira de Cimento Portland – ABCP. 2000. Fabricação de tijolos
de solo-cimento com a utilização de prensas manuais. 3ª ed. ABCP, São Paulo,
16 pp.
Associação Brasileira de Normas Técnicas – ABNT. 2004a. NBR 10004:
Classificação de Resíduos Sólidos. ABNT, Rio de Janeiro, 71 pp.
Associação Brasileira de Normas Técnicas – ABNT. 2004b. NBR 10005:
Procedimento para obtenção de extrato lixiviado de resíduos sólido. ABNT,
Rio de Janeiro, 16 pp.
Associação Brasileira de Normas Técnicas – ABNT. 2012a. NBR 8491: Tijolo
de solo-cimento — Requisitos. ABNT, Rio de Janeiro, 5 pp.
Associação Brasileira de Normas Técnicas – ABNT. 2012b. NBR 8492: Tijolo de
solo-cimento — Análise dimensional, determinação da resistência à compressão
e da absorção de água — Método de ensaio. ABNT, Rio de Janeiro, 4 pp.
Azevedo, A.R.G.; Marvila, T.M.; Júnior Fernandes, W.; Alexandre, J.; Xavier,
G.C.; Zanelato, E.B.; Cerqueira, N.A.; Pedroti, L.G.; Mendes, B.C., 2019.
Assessing the potential of sludge generated by the pulp and paper industry
in assembling locking blocks. Journal of Building Engineering, v. 23, 334-340.
https://doi.org/10.1016/j.jobe.2019.02.012.
Balaguera, A.; Carvajal, G.I.; Albertí, J.; Fullana-I-Palmer, P., 2018. Life
cycle assessment of road construction alternative materials: a literature
review. Resources, Conservation and Recycling, v. 132, 37-48. https://doi.
org/10.1016/j.resconrec.2018.01.003.
Balaji, N.C.; Mani, M.; Venkatarama Reddy, B.V., 2017. Thermal conductivity studies
on cement-stabilised soil blocks. Proceedings of Institution of Civil Engineers:
Construction Materials, v. 170, (1), 40-54. https://doi.org/10.1680/jcoma.15.00032.
Bardin, L., 1977. Análise de conteúdo. 70, Persona, Lisboa, 224 pp.
Barros, M.M.; Oliveira, M.F.L.; Ribeiro, R.C.C.; Bastos, D.C.; Oliveira, M.G.,
2020. Ecological bricks from dimension stone waste and polyester resin.
Construction and Building Materials, v. 232, 117252. https://doi.org/10.1016/j.
conbuildmat.2019.117252.
Ben Mansour, M.; Ogam, E.; Jelidi, A.; Cherif, A.S.; Jabrallah, S.B.,
2017. Influence of compaction pressure on the mechanical and acoustic
properties of compacted earth blocks: An inverse multi-parameter acoustic
problem. Applied Acoustics, v. 125, 128-135. https://doi.org/10.1016/j.
apacoust.2017.04.017.
Bruna, G.C.; Vizioli, S.H.T., 2006. Social housing with soil-cement brick as a
structuring element for the sustainable development of João Dourado (BA).
Brazilian Journal of Environmental Sciences (Online), (4), 43-49.
Bruno, A.; Gallipoli, D.; Perlot, C.; Kallel, H., 2020. Thermal performance of
fired and unfired earth bricks walls. Journal of Building Engineering, v. 28,
101017. https://doi.org/10.1016/j.jobe.2019.101017.
Buyle, M.; Braet, J.; Audenaert, A., 2013. Life cycle assessment in the
construction sector: A review. Renewable and Sustainable Energy Reviews, v.
26, 379-388. https://doi.org/10.1016/j.rser.2013.05.001.
Campbell, J.W.; Pryce, W. 2003. Brick a world history. Thames & Hudson,
London, 320 pp.
Campos, A.; Nascimento Junior, J.B.; Brito, L.T., 2019. Structural behavior
of soil-cement bricks using different sources of water and healing methods.
Interações, v. 20, (1), 283-296. https://doi.org/10.20435/inter.v0i0.1565.
Cardoso, A.; Gallato, S.; Guadagnin, M., 2014. Estimated generation of
construction waste and feasibility study for a sorting and recycling plant.
Brazilian Journal of Environmental Sciences (Online), (31), 1-10.
Carrasco, E.V.M.; Silva, S.R.; Mantilla, J.N.R., 2014. Assessment of mechanical
properties and the influence of the addition of sawdust in soil-cement bricks
using the technique of ultrasonic anisotropic inspection. Journal of Materials
in Civil Engineering, v. 26, (2), 219-225. https://doi.org/10.1061/(ASCE)
MT.1943-5533.0000723.
Castro, A.L.; Pandolfelli, V.C., 2009. Review: concepts of particle dispersion
and packing for special concretes production. Cerâmica, v. 55, (333), 18-32.
https://doi.org/10.1590/S0366-69132009000100003.
Castro, M.A.M.; Costa, F.G.; Borba, S.C.; Fagury Neto, E.; Rabelo, A.A., 2016.
Avaliação das propriedades físicas e mecânicas de blocos de solo-cimento
formulados com coprodutos siderúrgicos. Revista Matéria, v. 21, (3), 666-676.
https://doi.org/10.1590/S1517-707620160003.0064.
Cristina, P.; Salomão, P.E.A.; Cangussú, L.; Carvalho, P.H.V., 2018. Brick solo
cement with vegetable fiber addition: an alternative in civil construction.
Research, Society and Development, v. 7, (9), e779439. https://doi.
org/10.17648/rsd-v7i9.439.
De Lassio, J.; França, J.; Santo, K.E.; Haddad, A., 2016. Case study: LCA
methodology applied to materials management in a Brazilian residential
construction site. Journal of Engineering, v. 2016, 8513293. https://doi.
org/10.1155/2016/8513293.
Fernandes, F.M.; Lourenço, P.B.; Castro, F., 2010. Ancient clay bricks:
manufacture and properties. In: Dan M.B., Přikryl R., Török Á. (Eds.),
Materials, technologies and practice in historic heritage structures. Springer,
Dordrecht, pp. 29-48.
Ferreira, D.; Luso, E.; Cruz, M., 2018. Blocos ecológicos de solo-cimento com
incorporação de resíduos. Construction Pathology, Rehabilitation Technology
and Heritage Management, v. 2018, 1368-1376.
Ferreira, R.; Gobo, J.; Cunha, A., 2008. Incorporação de casca de arroz e de
braquiária e seus efeitos nas propriedades físicas e mecânicas de tijolos de
solo-cimento. Engenharia Agrícola, v. 28, (1), 1-11. https://doi.org/10.1590/
S0100-69162008000100001
Ferreira, R.C.; Cunha, A.H.N., 2017. Quality evaluation of soil-cement-plant
waste bricks by the combination of destructive and non-destructive tests.
Revista Brasileira de Engenharia Agrícola e Ambiental, v. 21, (8), 543-549.
https://doi.org/10.1590/1807-1929/agriambi.v21n8p543-549.
Galan-Marin, C.; Rivera-Gomez, C.; Garcia-Martinez, A., 2016. Use of naturalfiber
bio-composites in construction versus traditional solutions: operational
and embodied energy assessment. Materials, v. 9, (6), p. 465. https://doi.
org/10.3390/ma9060465.
Huarachi, D.A.; Gonçalves, G.; Francisco, A.C.; Canteri, M.H.G.; Piekarski,
C.M., 2020. Life cycle assessment of traditional and alternative bricks: a
review. Environmental Impact Assessment Review, v. 80, 106335. https://doi.
org/10.1016/j.eiar.2019.106335.
Joglekar, S.N.; Kharkar, R.A.; Mandavgane, S.A.; Kulkarni, B.D., 2018.
Sustainability assessment of brick work for low-cost housing: A comparison
between waste-based bricks and burnt clay bricks. Sustainable Cities and
Society, v. 37, 396-406. https://doi.org/10.1016/j.scs.2017.11.025.
Jordan, R.A.; Costa, M.V.; Martins, E.A.S.; Rosa, M.A.; Petrauski, A., 2019.
Manufacture of soil-cement bricks with the addition of sugarcane bagasse ash.
Engenharia Agrícola, v. 39, (1), 26-31. https://doi.org/10.1590/1809-4430-Eng.
Agric.v39n1p26-31/2019.
Kadir, A.A.; Mohajerani, A., 2011. Bricks: an excellent building material
for recycling wastes - a review. IASTED International Conference on
Environmental Management and Engineering, v. 2, 108-115.
Kadir, A.A.; Mohajerani, A., 2012. Properties improvement of fired clay
bricks incorporating with cigarette butts. Advanced Materials Research,
v. 535-537, 1723-1730. https://doi.org/10.4028/www.scientific.net/
AMR.535-537.1723.
Krishna, R.S.; Mishra, J.; Meher, S.; Das, S.K.; Mustakim, S.M.; Singh,
S.K., 2020. Industrial solid waste management through sustainable green
technology: Case study insights from steel and mining industry in Keonjhar,
India. Materials Today: Proceedings, v. 33, (part 8), 5243-5249. https://doi.
org/10.1016/j.matpr.2020.02.949.
Kurmus, H.; Mohajerani, A., 2020. Recycling of cigarette butts in fired clay
bricks: a new laboratory investigation. Materials, v. 13, (3), 790. https://doi.
org/10.3390/ma13030790.
Leonel, R.F.; Folgueras, M.V.; Dalla Valentina, L.V.O.; Prim, S.R.; Prates,
G.A.; Caraschi, J.C., 2017. Characterization of soil-cement bricks with
incorporation of used foundry sand. Cerâmica, v. 63, (367), 329-335. https://
doi.org/10.1590/0366-69132017633672131.
Li Piani, T.; Weerheijm, J.; Peroni, M.; Koene, L.; Krabbenborg, D.; Solomos,
G.; Sluys, L.J., 2020. Dynamic behaviour of adobe bricks in compression:
The role of fibres and water content at various loading rates. Construction
and Building Materials, v. 230, 117038. https://doi.org/10.1016/j.
conbuildmat.2019.117038.
Lozano-Miralles, J.A.; Hermoso-Orzáez, M.J.; Martínez-García, C.; Rojas-Sola,
J.I., 2018. Comparative study on the environmental impact of traditional clay
bricks mixed with organic waste using life cycle analysis. Sustainability, v. 10,
(8), 2917. https://doi.org/10.3390/su10082917.
Marcelino-Sadaba, S.; Kinuthia, J.; OTI, J.; Meneses, A.S., 2017. Challenges in life
cycle assessment (LCA) of stabilized clay-based construction materials. Applied
Clay Science, v. 144, 121-130. https://doi.org/10.1016/j.clay.2017.05.012.
McGregor, F.; Heath, A.; Fodde, E.; Shea, A., 2014. Conditions affecting
the moisture buffering measurement performed on compressed earth
blocks. Building and Environment, v. 75, 11-18. https://doi.org/10.1016/j.
buildenv.2014.01.009.
Mohajerani, A.; Ukwatta, A.; Setunge, S., 2018. Fired-clay bricks incorporating
biosolids: Comparative life-cycle assessment. Journal of Materials in Civil
Engineering, v. 30, (7), 1-12. https://doi.org/10.1061/(ASCE)MT.1943-
5533.0002308.
Muñoz, P.; Morales, M.P.; Letelier, V.; Mendívil, M.A., 2016. Fired clay bricks
made by adding wastes: Assessment of the impact on physical, mechanical
and thermal properties. Construction and Building Materials, v. 125, 241-252.
https://doi.org/10.1016/j.conbuildmat.2016.08.024.
Murmu, A.L.; Patel, A., 2018. Towards sustainable bricks production: an
overview. Construction and Building Materials, v. 165, 112-125. https://doi.
org/10.1016/j.conbuildmat.2018.01.038.
Nascimento, E.P., 2012. Trajetória da sustentabilidade: do ambiental ao social,
do social ao econômico. Estudos Avançados, v. 26, (74), 51-64. https://doi.
org/10.1590/S0103-40142012000100005.
Neves, C.; Faria, O.B., 2011. Técnicas de construção com terra. FEB-UNESP/
PROTERRA, Bauru, 79 p (Accessed November 19, 2020) at: http://www.
redproterra.org
Oliveira, J.R.; Garcia do Amaral, A.; Schneider, R.M., 2014. Incorporação de
resíduos sólidos de tornearias mecânicas na fabricação de tijolos solo-cimento.
Nativa, v. 2, (1), 53-57. https://doi.org/10.31413/nativa.v2i1.1370.
Paschoalin Filho, J.A.; Storopoli, J.H.; Dias, A.J.G., 2016. Avaliação da resistência
à compressão e da absorção de água de tijolos de solo cimento manufaturados
com adição de resíduos de pet (politereftalato de etileno). Acta Scientiarum –
Technology, v. 38, (2), 163-171. https://doi.org/10.4025/actascitechnol.v28i2.28458.
Peng, C.; Wu, X., 2017. Retracted: case study of carbon emissions from a
building’s life cycle based on BIM and Ecotect. Advances in Materials Science
and Engineering, v. 2017, 2193505. https://doi.org/10.1155/2017/2193505.
Pinheiro, M.L.; Alvarenga, R.C.S.S.; Ribeiro, B.C.; Silva Júnior, P.R.; Sarmet,
P.S.; Fassoni, D., 2013. Experimental evaluation of pressed blocks of soilcement
with grits addition. Ambiente Construído, v. 13, (2), 29-46. https://doi.
org/10.1590/S1678-86212013000200004.
Raut, A.N.; Gomez, C.P., 2017. Development of thermally efficient fibre-based
eco-friendly brick reusing locally available waste materials. Construction
and Building Materials, v. 133, 275-284. https://doi.org/10.1016/j.
conbuildmat.2016.12.055.
Reis, F.M.D.; Ribeiro, R.P.; Reis, M.J., 2020. Physical-mechanical properties of
soil-cement bricks with the addition of the fine fraction from the quartzite mining
tailings (State of Minas Gerais – Brazil). Bulletin of Engineering Geology and the
Environment, v. 79, 3741-3750. https://doi.org/10.1007/s10064-020-01765-3.
Rempel, A.R.; Rempel, A., 2016. W. Intrinsic evaporative cooling by
hygroscopic earth materials. Geosciences, v. 6, (3), 38. https://doi.org/10.3390/
geosciences6030038.
Rodrigues, L.P.; Holanda, J.N.F., 2015. Recycling of water treatment plant waste
for production of soil-cement bricks. Procedia Materials Science, v. 8, 197-202.
https://doi.org/10.1016/j.mspro.2015.04.064.
Rodseth, C.; Notten, P.; Von Blottnitz, H.A., 2020. A revised approach for
estimating informally disposed domestic waste in rural versus urban South
Africa and implications for waste management. South African Journal of
Science, v. 116, (1-2), 1-6. https://doi.org/10.17159/sajs.2020/5635.
Romeiro, A.R., 2012. Desenvolvimento sustentável: uma perspectiva
econômica ecológica. Estudos Avançados, v. 26, (74), 65-92. https://doi.
org/10.1590/S0103-40142012000100006.
Saidi, M.; Cherif, A.S.; Zeghmati, B.; Sediki, E., 2018. Stabilization effects on
the thermal conductivity and sorption behavior of earth bricks. Construction
and Building Materials, v. 167, 566-577. https://doi.org/10.1016/j.
conbuildmat.2018.02.063.
Sandanayake, M.; Zhang, G.; Setunge, S.A., 2018. Comparative method
of air emission impact assessment for building construction activities.
Environmental Impact Assessment Review, v. 68, 1-9. https://doi.org/10.1016/j.
eiar.2017.09.003.
Santos, C.F.R.; Alvarenga, R.C.S.S.; Ribeiro, B.C., 2013. Tijolos de solocimento-
couro: caracterização física e mecânica de teores de misturas. Elecs,
1-13. http://dx.doi.org/10.12702/978-85-89478-40-3-a049.
Seco, A.; Omer, J.; Marcelino, S.; Espuelas, S.; Prieto, E., 2018. Sustainable
unfired bricks manufacturing from construction and demolition wastes.
Construction and Building Materials, v. 167, 154-165. https://doi.
org/10.1016/j.conbuildmat.2018.02.026.
Segantini, A.A.S.; Wada, P.H., 2011. Estudo de dosagem de tijolos de
solo-cimento com adição de resíduos de construção e demolição. Acta
Scientiarum - Technology, v. 33, (2), 179-183. http://dx.doi.org/10.4025/
actascitechnol.v33i2.9377.
Sekhar, C.D.; Nayak, S., 2018. Utilization of granulated blast furnace
slag and cement in the manufacture of compressed stabilized earth
blocks. Construction and Building Materials, v. 166, 531-536. https://doi.
org/10.1016/j.conbuildmat.2018.01.125.
Sena, R.J.; Laursen, A.; Silva, J., 2017. Avaliação mecânica de tijolo maciço
solo-cimento contendo resíduo de pet. Veredas, v. 10, (1), 69-83.
Silva, W.M.; Ferreira, R.C.; Souza, L.O.; Silva, A.M., 2009. Effect of
the incorporation of agro-industrial residues on the mechanical and
thermophysical characteristics of soil-cement modular bricks. Brazilian
Journal of Environmental Sciences (Online), (14), 9-14.
Silva, W.M.; Ferreira, R.C.; Souza, L.O.; Silva, A.M., 2010. Management
of construction and demolition waste and its use as a base, sub-base and
bituminous mixture in urban pavement in Goiânia - GO. Brazilian Journal of
Environmental Sciences (Online), (15), 1-9.
Siqueira, F.B.; Amaral, M.C.; Bou-Issa, R.A.; Holanda, J.N.F., 2016. Influence of
industrial solid waste addition on properties of soil-cement bricks. Cerâmica,
v. 62, (363), 237-241. https://doi.org/10.1590/0366-69132016623631969.
Siqueira, F.B.; Holanda, J.N.F., 2015. Effect of incorporation of grits waste on
the densification behavior of soil-cement bricks. Cerâmica, v. 61, (360), 414-
419. https://doi.org/10.1590/0366-69132015613601917.
Slipa Kasa, S.; Yao, L.; Perinaz, B.T.; Woerden, F.V. 2018. What a Waste
2.0 - A global snapshot of solid waste management to 2050. World Bank,
Washington, D.C., 271 p.
Smol, M.; Kulczycka, J.; Henclik, A.; Gorazda, K.; Wzorek, Z., 2015. The
possible use of sewage sludge ash (SSA) in the construction industry as a
way towards a circular economy. Journal of Cleaner Production, v. 95, 45-54.
https://doi.org/10.1016/j.jclepro.2015.02.051.
Subramaniaprasad, C. K.; Abraham, B.M.; Nambiar, E.K.K., 2014. Sorption
characteristics of stabilised soil blocks embedded with waste plastic fibres.
Construction and Building Materials, v. 63, 25-32. https://doi.org/10.1016/j.
conbuildmat.2014.03.042.
Subramaniaprasad, C.K.; Abraham, B.M.; Nambiar, E.K.K., 2015. Influence of
embedded waste-plastic fibers on the improvement of the tensile strength of
stabilized mud masonry blocks. Journal of Materials in Civil Engineering, v.
27, (7), 1-7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001165.
United Nations. 2020. A ONU e o meio ambiente. (Acessed November 2020)
at: https://nacoesunidas.org/acao/meio-ambiente/.
Valadão, I.; Domingos, F.; Queiroz, I.; Silva, K.; Leal, L., 2017. Tijolo ecológico
confeccionado com cédulas de dinheiro sem valor. Semioses, v. 11, (4). http://
dx.doi.org/10.15202/1981996X.2017v11n4p64.
Venkatarama Reddy, B.V.; Jagadish, K.S., 2003. Embodied energy of common
and alternative building materials and technologies. Energy and Buildings, v.
35, (2), 129-137. https://doi.org/10.1016/S0378-7788(01)00141-4.
Weber, E.; Campos, R.; Borga, T., 2017. Analysis of the efficiency of ecological
brick solo-cement in civil construction. Ignis, v. 6, (2), 18-34.
Yuan, X.; Tang, Y.; Li, Y.; Wang, O.; Zuo, J.; Song, Z., 2018. Environmental
and economic impacts assessment of concrete pavement brick and
permeable brick production process - A case study in China. Journal
of Cleaner Production, v. 171, 198-208. http://dx.doi.org/10.1016/j.
jclepro.2017.10.037.
Zakham, N.; El Rhaffari, Y.; Ammari, A.; Cherraj, M.; Bouabid, H.;
Gueraoui, K.; Samaouali, A.; Mzerd, A., 2018. Influence of cement
content on the thermal properties of compressed earth blocks
(CEB) in the dry state. MATEC, v. 149, 1-5. https://doi.org/10.1051/
matecconf/201814901059.
Zhang, L., 2013. Production of bricks from waste materials - A review.
Construction and Building Materials, v. 47, 643-655. https://doi.org/10.1016/j.
conbuildmat.2013.05.043.
Zhang, Z.; Wong, Y.C.; Arulrajah, A.; Horpibulsuk, S., 2018. A review of
studies on bricks using alternative materials and approaches. Construction
and Building Materials, v. 188, 1101-1118. https://doi.org/10.1016/j.
conbuildmat.2018.08.152.