Increased quality of small-scale organic compost with the addition of efficient microorganisms

Authors

DOI:

https://doi.org/10.5327/Z21769478949

Keywords:

vermicomposting, waste recovery, pathogens, organic fertilizer

Abstract

Substantial quantities of solid livestock waste are potential sources of nutrients for agroecological production on small-scale farms. However, processes used to manage and dispose of this type of waste must be able to eliminate pathogenic microorganisms. This work aimed to evaluate composting and vermicomposting processes by inoculating efficient microorganisms (EMs) at the field level. Composting and vermicomposting were performed with a mixture of cattle and goat manure and sawdust (2:1:1), with the inoculation of EMs at concentrations of 0, 2, and 4 mL L-1. In vermicomposting experiments, Lumbricus rubellus (100 g 250 dm-3 substrate) were inoculated. After the maturation and stabilization phases of the compost, concentrations of organic carbon, macronutrients, micronutrients, heavy metals, thermotolerant coliforms, and Salmonella spp. were analyzed. The composting experiments, regardless of the presence of EMs, have been shown to have higher humidity. Also, the final compost had a lower pH value. Macronutrients, such as P, K, Ca, and S, were observed to a greater extent in the composting experiments associated with 4 mL of EMs (EM4); while organic carbon and Mg were higher in vermicomposting. The vermicomposting process also allowed for more effective elimination of pathogens, such as thermotolerant coliforms, especially when associated with 2 mL of EMs (EM2). The compost products produced allowed waste with potential agroecological use to be recognized as important.

Downloads

Download data is not yet available.

References

Albiach, R.; Canet, R.; Pomares, F.; Ingelmo, F., 2000. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil, Bioresource Technology, v. 75, (1), 43-48. https://doi.org/10.1016/S0960-8524(00)00030-4.

Alori, E.T.; Dare, M.O.; Babalola, O.O., 2017. Microbial inoculants for soil quality and plant health. In: Lichtfouse, E. (Ed.), Sustainable agriculture reviews. Springer, Cham, v. 22, pp. 281-307.

Benedetti, T.; Huzar-Novakowiski, J.; Sordi, E.; Carvalho, I.R.; Bortoluzzi, E.C., 2021. Microorganisms in the biological control of root-knot nematode: a metanalytical study. Research, Society and Development, v. 10, (6), e39310615209. https://doi.org/10.33448/rsd-v10i6.15209.

Boechat, C.L.; Carlos, F.S.; Nascimento, C.W.A.; Quadros, P.D.; Sá, E.L.S.; Camargo, F.A.O., 2020. Bioaugmentation-assisted phytoremediation of As, Cd, and Pb using Sorghum bicolor in a contaminated soil of an abandoned gold ore processing plant. Revista Brasileira de Ciência do Solo, v. 44, e0200081. https://doi.org/10.36783/18069657rbcs20200081.

Bonfin, F.P.G.; Honorio, I.C.G.; Reis, I.L.; Pereira, A.J.; Souza, D.B., 2011. Caderno dos microrganismos eficientes (EM): Instruções práticas sobre uso ecológico e social do EM. Universidade Federal de Viçosa, Viçosa.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento – MAPA. 2009. Instrução Normativa SDA nº 25, de 23 de julho de 2009. Ministério da Agricultura, Pecuária e Abastecimento. Brasília (Accessed October 4, 2020) at: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-25-de-23-7-2009-fertilizantes-organicos.pdf.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento – MAPA. 2016. Instrução Normativa SDA nº 7, de 12 de abril de 2016. Ministério da Agricultura, Pecuária e Abastecimento, Brasília (Accessed October 4, 2020) at: http://www.limpezapublica.com.br/textos/limites_maximos_de_contaminantes_admitidos_em_substrato_.pdf.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento – MAPA. 2017. Manual de métodos analíticos oficiais para fertilizantes e corretivos. Ministério da Agricultura, Pecuária e Abastecimento, Brasília.

Braun-Howland, E.B.; Best, J.; Blodgett, R.J.; Boczek, L.; Dichter, G.; Johnson, C.H., 2017. 9221 Multiple-tube fermentation technique for members of the coliform group. In: Baird, R.B.; Andrew, D.E.; Rice, E.W. (Eds.), Standard Methods for the examination of water and wastewater, (Method: 9221E). American Public Health Association, Washington, D.C., pp. 1-12.

Brenes-Peralta, L.P.; Jiménez-Morales, M.F.; Campos-Rodríguez, R., 2021. Food waste valorization through composting and bio-drying for small scale fruit processing agro-industries. Ingeniería y Competitividad, v. 23, (1), e9623. https://doi.org/10.25100/iyc.v23i1.9623.

Bustamante, M.A.; Restrepo, A.P.; Alburquerque, J.A.; Pérez-Murcia, M.D.; Paredes, C.; Moral, R.; Bernal, M.P., 2013. Recycling of anaerobic digestates by composting: effect of the bulking agent used. Journal of Cleaner Production, v. 47, 61-69. https://doi.org/10.1016/j.jclepro.2012.07.018.

Calderón-Tapia, C.; Montero-Calderón, A.; Núñez-Moreno, M.; Pazmiño-Arias, E., 2020. Laboratory scale evaluation of Effective Microorganisms in the control of odor of organic waste from a market in the city of Riobamba, Ecuador. Bionatura, v. 5, (1), 1044-1049. https://doi.org/10.21931/RB/2020.05.01.6.

Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E., 2013. Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nature Education Knowledge, v. 4, (4), 10.

Ciancio, N.R.; Ceretta, C.A.; Lourenzi, C.R.; Ferreira, P.A.A.; Trentin, G.; Lorensini, F.; Tiecher, T.L.; Conti, L.; Girotto, E.; Brunetto, G., 2014. Crop response to organic fertilization with supplementary mineral nitrogen. Revista Brasileira de Ciência do Solo, v. 38, (3), 912-922. https://doi.org/10.1590/S0100-06832014000300023.

Ciapparelli, I.C.; Iorio, A.F.; García, A.R., 2016. Phosphorus downward movement in soil highly charged with cattle manure. Environmental Earth Science, v. 75, 568. https://doi.org/10.1007/s12665-016-5284-3.

Dell’anno, F.; Brunet, C.; Van Zyl, L.J.; Trindade, M.; Golyshin, P.N.; Dell’anno, A.; Ianora, A.; Sansone, C., 2020. Degradation of hydrocarbons and heavy metal reduction by marine bacteria in highly contaminated sediments. Microorganisms, v. 8, (9), 1402. https://dx.doi.org/10.3390%2Fmicroorganisms8091402.

Diering, N.L., 2020. Efeitos de microrganismos eficientes no porta-enxerto Poncirus trifoliata (L.) Raf e nos cultivos da laranja Valência e do Tangor Murccot. Universidade Federal da Fronteira Sul, Erechim.

Domínguez, J.; Gómez-Brandón, M., 2013. The influence of earthworms on nutrient dynamics during the process of vermicomposting. Waste Management & Research, v. 31, (8), 859-868. https://doi.org/10.1177/0734242x13497079.

Eckhardt, D.P.; Redin, M.; Santana, N.A.; Conti, L.; Dominguez, J.; Jacques, R.J.S.; Antoniolli, Z.I., 2018. Cattle manure bioconversion effect on the availability of nitrogen, phosphorus, and potassium in soil. Revista Brasileira de Ciência do Solo, v. 42, e0170327. https://doi.org/10.1590/18069657rbcs20170327.

Elbl, J.; Maková, J.; Javoreková, S.; Medo, J.; Kintl, A.; Lošák, T.; Lukas, V., 2019. Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality. Agronomy, v. 9, (9), 485. https://doi.org/10.3390/agronomy9090485.

Ermolaev, E.; Sundberg, C.; Pell, M.; Jönsson, H., 2014. Greenhouse gas emissions from home composting in practice. Bioresource Technology, v. 151, 174-182. https://doi.org/10.1016/j.biortech.2013.10.049.

Faverial, J.; Sierra, J., 2014. Home composting of household biodegradable wastes under the tropical conditions of Guadeloupe (French Antilles). Journal of Cleaner Production, v. 83, 238-244. https://doi.org/10.1016/j.jclepro.2014.07.068.

Hemidat, S.; Jaar, M.; Nassour, A.; Nelles, M., 2018. Monitoring of composting process parameters: a case study in Jordan. Waste and Biomass Valorization, v. 9, 2257-2274. https://doi.org/10.1007/s12649-018-0197-x.

Hénault-Ethier, L.; Martin, V.J.; Gélinas, Y., 2016. Persistence of Escherichia coli in batch and continuous vermicomposting systems. Waste Management, v. 56, 88-99. https://doi.org/10.1016/j.wasman.2016.07.033.

Hendriani, N.; Juliastuti, S.R.; Masetya, H.N.; Saputra, I.T.A., 2017. Composting of corn by-product using EM4 and microorganism Azotobacter sp. as composting organism. KnE Life Sciences, v. 3, (5), 158-166. http://dx.doi.org/10.18502/kls.v3i5.988.

Herberts, R.A.; Coelho, C.R. de A.; Miletti, L.C.; Mendonça, M.M., 2005. Composting of organic solid waste: biotechnology. Health and Environmental Journal, v. 6, (1), 41-50.

Huhe; Jiang, C.; Wu, Y.; Cheng, Y., 2017. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting. Microbiologyopen, v. 6, (6), e00518. https://dx.doi.org/10.1002%2Fmbo3.518.

Jerônimo, G.; Senhuk, A.; Luz, M.; Gonçalves, J.; Ferreira, D., 2020. Efficiency of biocompost potentiated with chemical fertilizer and facilitated aeration. Ciência e Natura, v. 42, e31. https://doi.org/10.5902/2179460X41908.

Jusoh, M.L.C.; Manaf, L.A.; Latiff, P.A., 2013. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian Journal of Environmental Health Science & Engineering, v. 10, (1), 17. https://doi.org/10.1186/1735-2746-10-17.

Kabelitz, T.; Ammon, C.; Funk, R.; Münch, S.; Biniasch, O.; Nübel, U.; Thiel, N.; Rösler, U.; Siller, P.; Amon, B.; Aarnink, A.J.A.; Amon, T., 2020. Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application. Environment International, v. 143, 105577. https://doi.org/10.1016/j.envint.2020.105577.

Kabelitz, T.; Biniasch, O.; Ammon, C.; Nübel, U.; Thiel, N.; Janke, D.; Swaminathan, S.; Funk, R.; Münch, S.; Rösler, U.; Siller, P.; Amon, B.; Aarnink, A.J.A.; Amon, T., 2021. Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment. Science of The Total Environment, v. 780, 146652. https://doi.org/10.1016/j.scitotenv.2021.146652.

Knapp, B.A.; Ros, M.; Insam, H., 2010. Do composts affect the soil microbial community? In: Insam, H.; Franke-Whittle, I.; Goberna, M. (Eds), Microbes at work: from wastes to resources. Springer, Berlin, Heidelberg, pp. 271-291.

Komiyama, T.; Kobayashi, A.; Yahag, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. Journal of Material Cycles and Waste Management, v. 15, (1), 106-110. https://doi.org/10.1007/s10163-012-0089-2.

Larney, F.J.; Hao, X., 2007. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. Bioresource Technology, v. 98, (17), 3221-3227. https://doi.org/10.1016/j.biortech.2006.07.005.

Lim, S.L.; Lee, L.H.; Wu, T.Y., 2016. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production, v. 111, (Part A), 262-278. https://doi.org/10.1016/j.jclepro.2015.08.083.

Lv, B.; Xing, M.; Yang, J., 2016. Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresource Technology, v. 209, 397-401. https://doi.org/10.1016/j.biortech.2016.03.015.

Makan, A.; Assobhei, O.; Mountadar, M., 2013. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Journal of Environmental Health Science and Engineering, v. 10, (1), 3. https://dx.doi.org/10.1186%2F1735-2746-10-3.

Misra, R.V.; Ray, R.N.; Hiraoka, H., 2003. On-farm composting methods. Food and Agriculture Organization of the United Nations, Rome.

Morales, D.; Vargas, M.M.; Oliveira, M.P.; Taffe, B.L.; Comin, J.; Soares, C.R.; Lovato, P., 2016. Response of soil microbiota to nine-year application of swine manure and urea. Ciência Rural, v. 46, (2), 260-266. https://doi.org/10.1590/0103-8478cr20140565.

Nafez, A.H.; Nikaeen, M.; Hassanzadeh, A.; Kadkhodaei, S., 2020. Changes in microbial populations during co-composting of dewatered sewage sludge with pruning wastes in windrow piles. Biodiversitas, v. 21, (10), 4655-4662.

Nath, G.; Singh, K., 2012. Effect of vermiwash of different vermicomposts on the kharif crops. Journal of Central European Agriculture, v. 13, (2), 379-402. https://doi.org/10.5513/JCEA01/13.2.1063.

Nayak, N.; Sar, K.; Sahoo, B.K.; Mahapatra, P., 2020. Beneficial effect of effective microorganism on crop and soil - a review. Journal of Pharmacognosy and Phytochemistry, v. 9, (4), 3070-3074.

Nunes, M.U.C., 2009. Compostagem de resíduos para produção de adubo orgânico na pequena propriedade. Circular técnica 59, Embrapa, Aracaju, 1-7.

Nurhidayati, N.; Machfudz, M.; Murwani, I., 2018. Direct and residual effect of various vermicompost on soil nutrient and nutrient uptake dynamics and productivity of four mustard Pak-Coi (Brassica rapa L.) sequences in organic farming system. International Journal of Recycling of Organic Waste in Agriculture, v. 7, (2), 173-181. https://doi.org/10.1007/s40093-018-0203-0.

Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Ifeanyichukwu, E.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.J., 2017. Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, V. 190, 140-157. HTTPS://DOI.ORG/10.1016/J.JENVMAN.2016.12.051.

Osman, A.I.; Deka, T.J.; Baruah, D.C.; Rooney, D.W., 2020. Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00965-x.

Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; Gunasekaran, B.; Razak, S.A., 2020. Food waste composting and microbial community structure profiling. Processes, v. 8, (6), 723. https://doi.org/10.3390/pr8060723.

Patidar, A.; Gupta, R.; Tiwari, A., 2013. Potential of microbial inoculated water hyacinth amended thermophilic composting and vermicomposting in biodegradation of agro-industrial waste. Journal of Bioremediation & Biodegradation, v. 4, (5), 191. https://doi.org/10.4172/2155-6199.1000191.

Raja Namasivayam, S.K.; Bharani, R.S.A., 2012. Effect of compost derived from decomposed fruit wastes by effective microorganism (EM) technology on plant growth parameters of Vigna mungo. Journal of Bioremediation & Biodegradation, v. 3, (11), 167. https://doi.org/10.4172/2155-6199.1000167.

Rastogi, M.; Nandal, M.; Khosla, B., 2020. Microbes as vital additives for solid waste composting. Heliyon, v. 6, (2), e03343. https://doi.org/10.1016/j.heliyon.2020.e03343.

Rauber, L.P.; Andrade, A.P.; Friederichs, A.; Mafra, A.L.; Baretta, D.; Rosa, M.G.; Mafra, M.S.H.; Correa, J.C., 2018. Soil physical indicators of management systems in traditional agricultural areas under manure application. Scientia Agricola, v. 75, (4), 354-359. https://doi.org/10.1590/1678-992X-2016-0453.

Ribeiro, N.Q.; Souza, T.P.; Costa, L.M.A.S.; Castro, C.P.; Dias, E.S., 2017. Microbial additives in the composting process. Ciência e Agrotecnologia, v. 41, (2), 159-168. https://doi.org/10.1590/1413-70542017412038216.

Rivas, E.J.G.; Pérez, G.R.; Tundisi, J.G.; Vammen, K.; Örmeci, B.; Forde, M., 2020. Eutrophication: a growing problem in the Americas and the Caribbean. Brazilian Journal of Biology, v. 80, (3), 688-689. https://doi.org/10.1590/1519-6984.200001.

Ros, M.; Pascual, J.A.; García, C.; Hernández, M.T.; Insam, H., 2006. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biology and Biochemistry, v. 38, (12), 3443-3452. http://dx.doi.org/10.1016/j.soilbio.2006.05.017.

Sharma, A.; Saha, T.N.; Arora, A.; Shah, R.; Nain, L., 2017. Efficient microorganism compost benefits plant growth and improves soil health in calendula and marigold. Horticultural Plant Journal, v. 3, (2), 67-72. https://doi.org/10.1016/j.hpj.2017.07.003.

Sheffield, C.L.; Crippen, T.L.; Beier, R.C.; Byrd, J.A. 2014. Salmonella Typhimurium in chicken manure reduced or eliminated by addition of LT1000. Journal of Applied Poultry Research, v. 23, (1), 116-120. https://doi.org/10.3382/japr.2013-00867.

Shen, Z.; Zhong, S.; Wang, Y.; Wang, B.; Mei, X.; Li, R.; Ruan, Y.; Shen, Q., 2013. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. European Journal of Soil Biology, v. 57, 1-8. https://doi.org/10.1016/j.ejsobi.2013.03.006.

Sigstad, E.E.; Schabes, F.I.; Tejerina, F.A., 2013. A calorimetric analysis of soil treated with effective microorganisms. Thermochimica Acta, v. 569, 139-143. https://doi.org/10.1016/j.tca.2013.07.007.

Soobhany, N.; Mohee, R.; Garg, V.K., 2015. Comparative assessment of heavy metals content during the composting and vermicomposting of municipal solid waste employing Eudrilus eugeniae. Waste Management, v. 39, 130-145. https://doi.org/10.1016/j.wasman.2015.02.003.

Soobhany, N.; Mohee, R.; Garg, V.K., 2017. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review. Waste Management, v. 64, 51-62. https://doi.org/10.1016/j.wasman.2017.03.003.

Tran, Q.N.M.; Mimoto, H.; Koyama, M.; Nakasaki, K., 2019. Lactic acid bacteria modulate organic acid production during early stages of food waste composting. Science of the Total Environment, v. 687, 341-347. https://doi.org/10.1016/j.scitotenv.2019.06.113.

Tratsch, M.V.M.; Ceretta, C.A.; Silva, L.S.; Ferreira, P.A.A.; Brunetto, G., 2019. Composition and mineralization of organic compost derived from composting of fruit and vegetable waste. Revista Ceres, v. 66, (4), 307-315. https://doi.org/10.1590/0034-737X201966040009.

United States Environmental Protection Agency – USEPA. 1998. Method 3050B. USEPA (Accessed February 4. 2017) at: https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf.

Wako, R.E., 2021. Preparation and characterization of vermicompost made from different sources of materials. Open Journal of Plant Science, v. 6, (1), 42-48. https://doi.org/10.17352/ojps.000031.

Xiao, R.; Liu, X.; Ali, A.; Chen, A.; Zhang, M.; Li, R.; Chang, H.; Zhang, Z., 2021. Bioremediation of Cd-spiked soil using earthworms (Eisenia fetida): Enhancement with biochar and Bacillus megatherium application. Chemosphere, v. 264, (part 2), 128517. https://doi.org/10.1016/j.chemosphere.2020.128517.

Yadav, A.; Garg, V.K., 2016. Influence of stocking density on the vermicomposting of an effluent treatment plant sludge amended with cow dung. Environmental Science and Pollution Research, v. 23, (13), 13317-13326. https://doi.org/10.1007/s11356-016-6522-7.

Zeb, A.; Li, S.; Wu, J.; Lian, J.; Liu, W.; Sun, Y., 2020. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. Science of The Total Environment, v. 740, 140145. https://doi.org/10.1016/j.scitotenv.2020.140145.

Zhong, Z.; Bian, F.; Zhang, X., 2018. Testing composted bamboo residues with and without added effective microorganisms as a renewable alternative to peat in horticultural production. Industrial Crops and Products, v. 112, 602-607. https://doi.org/10.1016/j.indcrop.2017.12.043.

Downloads

Published

2021-09-01

How to Cite

Panisson, R., Paiva Muscope, F., Müller, C., Treichel, H., & Korf, E. P. (2021). Increased quality of small-scale organic compost with the addition of efficient microorganisms. Revista Brasileira De Ciências Ambientais (RBCIAMB), 56(3), 531–540. https://doi.org/10.5327/Z21769478949