Air pollutants associated with surface meteorological conditions in São Paulo’s ABC region

Authors

DOI:

https://doi.org/10.5327/Z21769478917

Keywords:

air pollution; particulate matter; tropospheric ozone; multivariate analysis; Brazil

Abstract

Air pollution is one the main environmental problems in urban areas like the Metropolitan Area of São Paulo (MASP) in Brazil, where millions of inhabitants are exposed to pollution concentrations above the standards, with potential health impacts. Exposure is unequal throughout MASP, relying on the dynamics of local emission sources interplaying with weather and climate in a regional scale. The ABC region — ABC standing for Santo André, São Bernardo do Campo and São Caetano do Sul, the cities the area originally comprised of — is MASP’s largest industrial center, sitting in its southeast border, and encloses environmental protection areas. That leads to a unique emission profile that differ from the metropolis center. This study aims to characterize the variability of atmospheric pollutants in the ABC region in 2015, investigating possible sources and associations with surface meteorological conditions. Multivariate statistical analyses were applied to data from seven air quality monitoring stations and surface meteorological variables. Results show that São Bernardo do Campo stood out, with O3 concentrations 20% higher (43±19 μg.m-3) than the other sites, while São Caetano do Sul had the highest annual mean PM10 concentrations (39±19 μg.m-3), mostly related to vehicular emissions. Relative humidity was negatively correlated with primary pollutants, while temperature and radiation correlated with O3. Unusually high O3 concentrations were observed in January of 2015, concomitant with negative anomalies of precipitation and relative humidity, likely associated with the 2014/2015 summer drought event in Southeast Brazil. Overall, results show that local emission sources significantly impact air pollution loading and its diurnal variability, particularly in the case of primary pollutants. Climate modulates the seasonal concentration variability, and regional scale weather phenomena may impact air quality conditions. To reach concentration standards everywhere, policy makers must be aware of processes occurring in different spatial scales that determine air quality.

Downloads

Download data is not yet available.

References

Alvim, D.S.; Gatti, L.V.; Corrêa, S.M.; Chiquetto, J.B.; Souza Rossatti, C.; Pretto, A.; Santos, M.H.; Yamazaki, A.; Orlando, J.P.; Santos, G.M., 2017. Main ozone-forming VOCs in the city of São Paulo: observations, modelling and impacts. Air Quality, Atmosphere & Health, v. 10, 421-435. https://doi.org/10.1007/s11869-016-0429-9.

Andrade, M.F.; Kumar, P.; Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; Miranda, R.M.; Albuquerque, T.; Gonçalves, F.L.T.; Oyama, B.; Zhang, Y., 2017. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmospheric Environment, v. 159, 66-82. https://doi.org/10.1016/j.atmosenv.2017.03.051.

Brasil. Conselho Nacional do Meio Ambiente – CONAMA, 2018. Resolution nº 491/2018. Conselho Nacional do Meio Ambiente, Brazil.

Carvalho, V.S.B.; Freitas, E.D.; Martins, L.D., Martins, J.A.; Mazzoli, C.R.; Andrade, M.F., 2015. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environmental Science & Policy, v. 47, 68-79. https://doi.org/10.1016/j.envsci.2014.11.001.

Carvalho, V.S.B.; Freitas, E.D.; Mazzoli, C.R.; Andrade, M.F., 2012. Avaliação da influência de condições meteorológicas na ocorrência e manutenção de um episódio prolongado com altas concentrações de ozônio sobre a Região Metropolitana de São Paulo. Revista Brasileira de Meteorologia, v. 27, (4), 463-474. https://doi.org/10.1590/S0102-77862012000400009.

Carvalho, V.S.B.; Martins, F.B.; Silveira, W.W.; Campos, B.; Simões, J.B., 2020. Variance analysis applied to ground-level ozone concentrations in the state of São Paulo, Brazil. Brazilian Journal of Chemical Engineering, v. 37, 505-513. https://doi.org/10.1007/s43153-020-00045-7.

Caumo, S.; Vicente, A.; Custódio, D.; Alves, C.; Vasconcellos, P., 2017. Organic compounds in particulate and gaseous phase collected in the neighbourhood of an industrial complex in São Paulo (Brazil). Air Quality, Atmosphere & Health, v. 11, 271-283. https://doi.org/10.1007/s11869-017-0531-7.

Cavalcanti, I.F.A.; Marengo, J.A.; Alves, L.M.; Costa, D.F., 2017. On the opposite relation between extreme precipitation over west Amazon and southeastern Brazil: observations and model simulations. International Journal of Climatology, v. 37, (9), 3606-3618. https://doi.org/10.1002/joc.4942.

Centro de Previsão de Tempo e Estudos Climáticos – CPTEC, 2015. Infoclima - Boletim de Informações Climáticas do CPTEC/INPE. CPTEC, Brasil.

Chiarelli, P.S.; Pereira, L.A.A.; Saldiva, P.H.N.; Ferreira Filho, C.; Garcia, M.L.B.; Braga, A.L.F.; Martins, L.C., 2011. The association between air pollution and blood pressure in traffic controllers in Santo André, São Paulo, Brazil. Environmental Research, v. 111, (5), 650-655. https://doi.org/10.1016/j.envres.2011.04.007.

Coelho, C.A.S.; Prestrelo de Oliveira, C.; Ambrizzi, T.; Reboita, M.S.; Carpenedo, C.B.; Campos, J.L.P.S.; Tomaziello, A.C.N.; Pampuch, L.A.; Custódio, M.S.; Dutra, L.M.M.; Rocha, R.P., Rehbein, A., 2016. The 2014 southeast Brazil austral summer drought : regional scale mechanisms and teleconnections. Climate Dynamics, v. 46, 3737-3752. https://doi.org/10.1007/s00382-015-2800-1.

Companhia Ambiental do Estado de São Paulo – CETESB, 2002. Caracterização das estações da rede automática de monitoramento da qualidade do ar na RMSP - Estação São Caetano do Sul. CETESB, São Paulo.

Companhia Ambiental do Estado de São Paulo – CETESB, 2014. Classificação da representatividade espacial das estações de monitoramento da qualidade do ar da CETESB no Estado de São Paulo - segunda etapa, Divisão de Qualidade do Ar. CETESB, São Paulo.

Companhia Ambiental do Estado de São Paulo – CETESB, 2016a. Classificação expedita da representatividade espacial das estações de monitoramento da qualidade do ar da CETESB no Estado de São Paulo. CETESB, São Paulo.

Companhia Ambiental do Estado de São Paulo – CETESB, 2016b. Qualidade do ar no estado de São Paulo 2015. CETESB, São Paulo.

Companhia Ambiental do Estado de São Paulo – CETESB, 2019. Qualidade do ar no Estado de São Paulo em 2018. CETESB, São Paulo.

Corrêa, H.K.; Riegel, R.P.; Alves, D.D.; Osório, D.M.M.; Costa, G.M.; Hussain, C.M.; Quevedo, D.M., 2019. Multivariate statistical analysis and use of geographic information systems in raw water quality assessment. Revista Brasileira de Ciências Ambientais, (52), 1-15. https://doi.org/10.5327/Z2176-947820190431.

Correia, P.R.M.; Ferreira, M.M.C., 2007. Reconhecimento de padrões por métodos não supervisionados: Explorando procedimentos quimiométricos para tratamento de dados analíticos. Química Nova, v. 30, (2), 481-487. https://doi.org/10.1590/S0100-40422007000200042.

Estévez-Pérez, G.; Vilar, J.A., 2013. Functional ANOVA starting from discrete data: An application to air quality data. Environmental and Ecological Statistics, v. 20, 495-517. https://doi.org/10.1007/s10651-012-0231-2.

Foss, M.; Chou, S.C.; Seluchi, M.E., 2017. Interaction of cold fronts with the Brazilian Plateau: a climatological analysis. International Journal of Climatology, v. 37, (9), 3644-3659. https://doi.org/10.1002/joc.4945.

Fundação Sistema Estadual de Análise de Dados – SEADE, 2018. Portal de Estatísticas do Estado de São Paulo (Accessed January 1, 2018) at.: http://www.imp.seade.gov.br/

Gozzo, L.F.; Palma, D.S.; Souza Custódio, M.; Drumond, A., 2021. Padrões climatológicos associados a eventos de seca no Leste do Estado de São Paulo. Revista Brasileira de Climatologia, v. 28, 321-341. http://dx.doi.org/10.5380/rbclima.v28i0.76268.

Guardani, R.; Aguiar, J.L.; Nascimento, C.A.O.; Lacava, C.I.V.; Yanagi, Y., 2003. Ground-Level Ozone Mapping in Large Urban Areas Using Multivariate Statistical Analysis: Application to the São Paulo Metropolitan Area. Journal of the Air & Waste Management Association, v. 53, (5), 553-559. https://doi.org/10.1080/10473289.2003.10466188.

Guimarães, P.; Rosário, N.É.; Rizzo, L.V., 2019. Percepção Da Poluição Do Ar Por Comerciários No Município De Diadema, Na Região Metropolitana De São Paulo. Revista Brasileira de Ciências Ambientais, (51), 112-127. https://doi.org/10.5327/Z2176-947820190440.

Gurjar, B.R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A.S.; Lelieveld, J., 2010. Human health risks in megacities due to air pollution. Atmospheric Environment, v. 44, (36), 4606-4613. https://doi.org/10.1016/j.atmosenv.2010.08.011.

Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo – IAG-USP, 2015a. Boletim Climatológico Anual da Estação Meteorológica do IAG/USP/Seção Técnica de Serviços Meteorológicos. Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo, São Paulo.

Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo – IAG-USP, 2015b. Resumo Mensal – Agosto, 2015. Estação Meteorológica do IAG-USP, v. 38, 39-40.

Kogan, F.; Guo, W., 2017. Strong 2015–2016 El Niño and implication to global ecosystems from space data. International Journal of Remote Sensing, v. 38, (1), 161-178. https://doi.org/10.1080/01431161.2016.1259679.

Kumar, P.; Fatima Andrade, M.; Ynoue, R.Y.; Fornaro, A.; Freitas, E.D.; Martins, J.; Martins, L.D.; Albuquerque, T.; Zhang, Y.; Morawska, L., 2016. New directions: From biofuels to wood stoves: The modern and ancient air quality challenges in the megacity of São Paulo. Atmospheric Environment, v. 140, 364-369. https://doi.org/10.1016/j.atmosenv.2016.05.059.

Laakso, L.; Hussein, T.; Aarnio, P.; Komppula, M.; Hiltunen, V.; Viisanen, Y.; Kulmala, M., 2003. Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmospheric Environment, v. 37, (19), 2629-2641. https://doi.org/10.1016/S1352-2310(03)00206-1.

Madronich, S., 2014. Atmospheric chemistry: Ethanol and ozone. Nature Geoscience, v. 7, 395-397. https://doi.org/10.1038/ngeo2168.

Marengo, J.A.; Nobre, C.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M.; Mendiondo, E.M.; Obregón, G.; Sampaio, G., 2015. A seca e a crise hídrica de 2014-2015 em São Paulo. Revista USP, (106), 31-44. https://doi.org/10.11606/issn.2316-9036.v0i106p31-44.

Marengo, J.A.; Soares, W.R.; Saulo, C.; Nicolini, M., 2004. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability. Journal of Climate, v. 17, 2261-2280. https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

Muñoz, R.C.; Alcafuz, R.I., 2012. Variability of urban aerosols over Santiago, Chile: Comparison of surface PM 10 concentrations and remote sensing with ceilometer and lidar. Aerosol and Air Quality Research, v. 12, (1), 8-14. https://doi.org/10.4209/aaqr.2011.08.0133.

Negrete, B.R.; Rosa, C.C.; Ikeuti, D.H.; Delena, P.J.; Borba, T.M.; Braga, A.L.F., 2010. Poluição atmosférica e internações por insuficiência cardíaca congestiva em adultos e idosos em Santo André (SP). Arquivos Brasileiros de Ciências da Saúde, v. 35, (3), 208-212.

Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, L.A.; Alves, L.M., 2016. Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. Journal of Water Resources Protection, v. 8, (2), 252-262. https://doi.org/10.4236/jwarp.2016.82022.

Oliveira, A.P.; Bornstein, R.D.; Soares, J., 2003. Annual and diurnal wind patterns in the city of São Paulo. Water, Air & Soil Pollution: Focus, v. 3, 3-15. https://doi.org/10.1023/A:1026090103764.

Oliveira, M.C.Q.D.; Rizzo, L.V.; Drumond, A., 2021. Characterization of Air-Quality Degradation Episodes of PM10 in the Metropolitan Area of São Paulo and Their Relationship with Meteorological Conditions. Environmental Sciences Proceedings, v. 4, (1), 8. https://doi.org/10.3390/ecas2020-08143.

Parrish, D.D., Zhu, T., 2009. Clean Air for Megacities. Science, v. 326, 5953, 674-675. https://doi.org/10.1126/science.1176064.

Pereira, H.R.; Reboita, M.S.; Ambrizzi, T., 2017. Características da Atmosfera na Primavera Austral Durante o El Niño de 2015/2016. Revista Brasileira de Meteorologia, v. 32, (2), 293-310. https://doi.org/10.1590/0102-77863220011.

Piñero Sánchez, M.; de Oliveira, A.P.; Varona, R.P.; Tito, J.V.; Codato, G.; Ribeiro, F.N.D.; Marques Filho, E.P.; da Silveira, L.C., 2020. Rawinsonde-Based Analysis of the Urban Boundary Layer in the Metropolitan Region of São Paulo, Brazil. Earth and Space Science, v. 7, (2), e2019EA000781. https://doi.org/10.1029/2019EA000781.

Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F.; da Rocha, R.P., 2019. The south atlantic subtropical anticyclone: Present and future climate. Frontiers in Earth Science, v. 7, 1-15. https://doi.org/10.3389/feart.2019.00008.

Ribeiro, F.N.D.; Oliveira, A.P.; Soares, J.; Miranda, R.M.; Barlage, M.; Chen, F., 2018. Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of São Paulo, Brazil. Atmospheric Research, v. 214, 174-188. https://doi.org/10.1016/j.atmosres.2018.07.015.

Saiki, M.; Alves, E.R.; Marcelli, M.P., 2007. Analysis of lichen species for atmospheric pollution biomonitoring in the Santo André municipality, São Paulo, Brazil. Journal of Radioanalytical and Nuclear Chemistry, v. 273, 543-547. https://doi.org/10.1007/s10967-007-0906-6.

Sánchez-Ccoyllo, O.R.; Silva Dias, P.L.; Andrade, M.F.; Freitas, S.R., 2005. Determination of O3-, CO- and PM10-transport in the metropolitan area of São Paulo, Brazil through synoptic-scale analysis of back trajectories. Meteorology and Atmospheric Physics, v. 92, 83-93. https://doi.org/10.1007/s00703-005-0139-6.

Santos, T.C.; Reboita, M.S.; Carvalho, V.S.B., 2018. Investigation of the relationship between atmospheric variables and the concentration of MP 10 and O 3 in the state of São Paulo. Revista Brasileira de Meteorologia, v. 33, (4), 631-645. https://doi.org/10.1590/0102-7786334006.

Savóia, E.J.L.; Domingos, M.; Guimarães, E.T.; Brumati, F.; Saldiva, P.H.N., 2009. Biomonitoring genotoxic risks under the urban weather conditions and polluted atmosphere in Santo André, SP, Brazil, through Trad-MCN bioassay. Ecotoxicology and Environmental Safety, v. 72, (1), 255-260. https://doi.org/10.1016/j.ecoenv.2008.03.019.

Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M., 2010. Is It Really Robust?: Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology, v. 6, (4), 147-151. https://doi.org/10.1027/1614-2241/a000016.

Schuch, D.; de Freitas, E.D.; Espinosa, S.I.; Martins, L.D.; Carvalho, V.S.B.; Ramin, B.F.; Silva, J.S.; Martins, J.A.; de Fatima Andrade, M., 2019. A two decades study on ozone variability and trend over the main urban areas of the São Paulo state, Brazil. Environmental Science and Pollution Research, v. 26, 31699-31716. https://doi.org/10.1007/s11356-019-06200-z.

Silva, L.T.; Abe, K.C.; Miraglia, S.G.E.K., 2017. Avaliação de impacto à saúde da poluição do ar no município de Diadema, Brasil. Revista Brasileira de Ciências Ambientais, (46), 117-129. https://doi.org/10.5327/Z2176-947820170258.

Silva Junior, R.S.; Oliveira, M.G.L.; Andrade, M.F., 2009. Weekend/weekday differences in concentrations of ozone, NOx and non-methane hydrocarbon in the metropolitan area of São Paulo. Revista Brasileira de Meteorologia, v. 24, (1), 100-110. https://doi.org/10.1590/S0102-77862009000100010

Sugahara, S.; da Rocha, R.P.; Ynoue, R.Y.; da Silveira, R.B., 2012. Homogeneity assessment of a station climate series (1933-2005) in the Metropolitan Area of São Paulo: Instruments change and urbanization effects. Theoretical and Applied Climatology, v. 107, 361-374. https://doi.org/10.1007/s00704-011-0485-x.

Valverde, M.C., 2017. The interdependence of climate and socioeconomic vulnerability in the ABC Paulista region. Ambiente e Socidade, v. 20, (3), 39-60. https://doi.org/10.1590/1809-4422asoc66r2v2032017.

Valverde, M.C.; Coelho, L.H.; de Oliveira Cardoso, A.; Paiva Junior, H.; Brambila, R.; Boian, C.; Martinelli, P.C.; Valdambrini, N.M., 2020. Urban climate assessment in the ABC Paulista Region of São Paulo, Brazil. Science of the Total Environment, v. 735, 139303. https://doi.org/10.1016/j.scitotenv.2020.139303.

Zhao, X.; Zhang, X.; Xu, X.; Xu, J.; Meng, W.; Pu, W., 2009. Seasonal and diurnal variations of ambient PM2.5concentration in urban and rural environments in Beijing. Atmospheric Environment, v. 43, (18), 2893-2900. https://doi.org/10.1016/j.atmosenv.2009.03.009.

Downloads

Published

2021-09-01

How to Cite

Silva, M. D., Oliveira, M. C. Q. D., Drumond, A., & Rizzo, L. V. (2021). Air pollutants associated with surface meteorological conditions in São Paulo’s ABC region. Revista Brasileira De Ciências Ambientais (RBCIAMB), 56(3), 459–469. https://doi.org/10.5327/Z21769478917