Study on Brazilian agribusiness wastewaters: composition, physical‑chemical characterization, volumetric production and resource recovery

Authors

DOI:

https://doi.org/10.5327/Z21769478875

Keywords:

nexus concept; organic liquid waste; environmental sustainability; agro-industrial wastewater; wastewater treatment.

Abstract

Brazil is a significant producer of agricultural and agro-industrial waste, which can be used to recover valuable resources, such as struvite, hydroxyapatite, methane gas, hydrogen gas, and carboxylic acids, to mitigate the environmental impacts of the agro-industrial sector, add economic value to organic waste, and promote the sustainability of natural resources. Thus, this work’s objective was to compile and analyze data on the composition, physical-chemical characterization, and volumetric production of six agricultural and agro-industrial wastewaters (AWWs) from activities of paramount importance in Brazilian agribusiness and to report studies on resource recovery from those liquid wastes. The literature review was carried out by analyzing scientific works obtained by searching for keywords in different databases. It was concluded that swine wastewaters (SWs), slaughterhouse wastewaters (SHWs), and dairy wastewaters (DWs) are the most promising for struvite recovery. DWs also stand out for the recovery of hydroxyapatite. SWs and brewery wastewaters (BWs) are commonly used for prospecting for algae or bacterial biomass and their derivative products. All AWWs analyzed are considered promising for biogas, methane and hydrogen, while the most soluble AWWs are more valuable for carboxylic acid production.

 

Downloads

Download data is not yet available.

References

Abdel-Fatah, M.A.; Sherif, H.O.; Hawash, S.I., 2017. Design Parameters for Waste Effluent Treatment Unit from Beverages Production. Ain Shams Engineering Journal, v. 8, (3), 305-310. https://doi.org/10.1016/j.asej.2016.04.008

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). 2017. Resolução ANP nº 685, de 29.6.2018 - DOU 30.6.2017. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) (Accessed January 22, 2020) at: http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2017/junho&item=ranp-685--2017

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). 2018. Anuário Estatístico Brasileiro Do Petróleo, Gás Natural e Biocombustíveis. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) (Accessed January 22, 2020) at: http://www.anp.gov.br/images/publicacoes/anuario-estatistico/2018/anuario_2018.pdf

Alzate, M.E.; Muñoz, R.; Rogalla, F.; Fdz-Polanco, F.; Pérez-Elvira, S.I., 2012. Biochemical Methane Potential of Microalgae: Influence of Substrate to Inoculum Ratio, Biomass Concentration and Pretreatment. Bioresource Technology, v. 123, 488-494. https://doi.org/10.1016/j.biortech.2012.06.113

Anitha, M.; Kamarudine, S.K.; Kofli, N.T., 2016. The Potential of Glycerol as a Value-Added Commodity. Chemical Engineering Journal, v. 295, 119-130. https://doi.org/10.1016/j.cej.2016.03.012

Arantes, M.K.; Alves, H.J.; Sequinel, R.; Silva, E.A., 2017. Treatment of Brewery Wastewater and Its Use for Biological Production of Methane and Hydrogen. International Journal of Hydrogen Energy, v. 42, (42), 26243-26256. https://doi.org/10.1016/j.ijhydene.2017.08.206

Associação Brasileira das Indústrias e do Setor de Sorvetes (ABIS). 2019. Produção e Consumo de Sorvetes No Brasil. Associação Brasileira das Indústrias e do Setor de Sorvetes (ABIS) (Accessed January 20, 2020) at: http://www.abis.com.br/

Bakare, B.F.; Shabangu, K.; Chetty, M., 2017. Brewery Wastewater Treatment Using Laboratory Scale Aerobic Sequencing Batch Reactor. South African Journal of Chemical Engineering, v. 24, 128-134. https://doi.org/10.1016/j.sajce.2017.08.001

Barros, G.S.C.; Castro, N.R.; Morais, A.C.P.; Machado, G.C.; Almeida, F.M.S.; Almeida, A.N., 2020. Mercado de Trabalho do Agronegócio Brasileiro. Boletim Mercado de Trabalho do Agronegócio Brasileiro. Centro de Estudos Avançados em Economia Aplicada (CEPEA) e Fundação de Estudos Agrários Luiz de Queiroz (FEALQ), Piracicaba, v. 4.

Bastidas-Oyanedel, J.R.; Bonk, F.; Thomsen, M.H.; Schmidt, J.E., 2015. Dark Fermentation Biorefinery in the Present and Future (Bio)Chemical Industry. Reviews in Environmental Science and Biotechnology, v. 14, (3), 473-498. https://doi.org/10.1007/s11157-015-9369-3.

Bastidas-Oyanedel, J.R.; Schmidt, J.E., 2018. Increasing Profits in Food Waste Biorefinery-a Techno-Economic Analysis. Energies, v. 11, (6), 1551. https://doi.org/10.3390/en11061551

Borja, R.; Banks, C.J., 1994. Kinetics of an Upflow Anaerobic Sludge Blanket Reactor Treating Ice-Cream Wastewater. Environmental Technology, v. 15, (3), 219-232. https://doi.org/10.1080/09593339409385423

Borja, R.; Banks, C.J., 1995. Response of an Anaerobic Fluidized Bed Reactor Treating Ice-Cream Wastewater to Organic, Hydraulic, Temperature and PH Shocks. Journal of Biotechnology, v. 39, (3), 251-259. https://doi.org/10.1016/0168-1656(95)00021-H

Brasil. Conselho Nacional do Meio Ambiente. 2011. Resolução nº 430, de 13 de Maio de 2011, do Conselho Nacional do Meio Ambiente – Conama. Dispõe Sobre as Condições e Padrões de Lançamento de Efluentes, Completa e Altera a Resolução nº 357, de Março de 2005, do Conselho Nacional do Meio Ambiente – CONAMA. Diário Oficial Da União.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. 2018. Projeções do Agronegócio: Brasil 2017/18 a 2027/28. Projeções de Longo Prazo. Ministério da Agricultura, Pecuária e Abastecimento, Brasília (Accessed February 5, 2020) at: https://www.bnb.gov.br/documents/80223/3732326/Informe+Agronegocio+03+-+Out2018.pdf/af384b9e-40aa-684d-60ae-e35222f015bd#:~:text=As%20proje%C3%A7%C3%B5es%20para%20o%20algod%C3%A3o,27%2C4%25%20na%20produ%C3%A7%C3%A3o

Bustillo-Lecompte, C.F.; Mehrvar, M., 2015. Slaughterhouse Wastewater Characteristics, Treatment, and Management in the Meat Processing Industry: A Review on Trends and Advances. Journal of Environmental Management, v. 161, 287-302. https://doi.org/10.1016/j.jenvman.2015.07.008

Carey, D.E.; Yang, Y.; McNamara, P.J.; Mayer, B.K., 2016. Recovery of Agricultural Nutrients from Biorefineries. Bioresource Technology, v. 215, 186-198. https://doi.org/10.1016/j.biortech.2016.02.093

Cavalcante, W.A.; Leitão, R.C.; Gehring, T.A.; Angenent, L.T.; Santaella, S.T., 2017. Anaerobic Fermentation for N-Caproic Acid Production: A Review. Process Biochemistry, v. 54, 106-119. https://doi.org/10.1016/j.procbio.2016.12.024

Centro de Estudos Avançados em Economia Aplicada (CEPEA); Confederação Nacional da Agricultura e Pecuária (CNA). 2020. PIB do Agronegócio Brasileiro de 1996 a 2018. Centro de Estudos Avançados em Economia Aplicada (CEPEA) e Confederação Nacional da Agricultura e Pecuária (CNA).

Cervieri Júnior, O.; Teixeira Júnior, J.R.; Galinari, R.; Rawet, E.L.; Silveira, C.T.J. 2014. O Setor de Bebidas No Brasil. Banco Nacional de Desenvolvimento Econômico e Social, (40), 93-129.

Chandra, R.; Castillo-Zacarias, C.; Delgado, P.; Parra-Saldívar, R., 2018. A Biorefinery Approach for Dairy Wastewater Treatment and Product Recovery towards Establishing a Biorefinery Complexity Index. Journal of Cleaner Production, v. 183, 1184-1196. https://doi.org/10.1016/j.jclepro.2018.02.124

Chen, H.; Chang, S.; Guo, Q.; Hong, Y.; Wu, P., 2016. Brewery Wastewater Treatment Using an Anaerobic Membrane Bioreactor. Biochemical Engineering Journal, v. 105, (part B), 321-331. https://doi.org/10.1016/j.bej.2015.10.006

Cheng, D.L.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Mathava Kumar, S.; Du, B.; Wei, Q.; Wei, D., 2018. Problematic Effects of Antibiotics on Anaerobic Treatment of Swine Wastewater. Bioresource Technology, v. 263, 642-653. https://doi.org/10.1016/j.biortech.2018.05.010

Chernicharo, C.A.L., 2007. Reatores Anaeróbios. 2 ed. UFMG/DESA, Belo Horizonte, 245 pp.

Centro Internacional de Energias Renováveis-Biogás (CIBiogás). 2020. Centro Internacional de Energias Renováveis-Biogás (Accessed April, 2020) at: https://cibiogas.org

Coelho, M.M.H. 2019. Avaliação Do Potencial e Modelagem Cinética Da Produção de Ácidos Carboxílicos a Partir de Resíduos Agroindustriais Tratados Anaerobiamente. Trabalho de Conclusão de Curso (Biotecnologia), Universidade Federal do Ceará, Fortaleza.

Coelho, M.M.H.; Morais, N.W.S.; Ferreira, T.J.T.; Silva, F.S.S.; Pereira, E.L.; Santos, A.B., 2020a. Carboxylic Acids Production Using Residual Glycerol as a Substrate in Anaerobic Fermentation: A Kinetic Modeling Study. Biomass and Bioenergy, 143, 105874. https://doi.org/10.1016/j.biombioe.2020.105874

Coelho, M.M.H.; Morais, N.W.S.; Pereira, E.L.; Leitão, R.C.; Santos, A.B., 2020b. Potential Assessment and Kinetic Modeling of Carboxylic Acids Production Using Dairy Wastewater as Substrate. Biochemical Engineering Journal, v. 156, 107502. https://doi.org/10.1016/j.bej.2020.107502

Confederação Nacional da Agricultura e Pecuária (CNA). 2020. Panorama do Agro. Confederação Nacional da Agricultura e Pecuária (CNA). (Accessed January 22, 2020) at: https://www.cnabrasil.org.br/cna/panorama-do-agro.

Dams, R.I.; Viana, M.B.; Guilherme, A.A.; Silva, C.M.; Santos, A.B.; Angenent, L.T.; Santaella, S.T.; Leitão, R.C., 2018. Production of Medium-Chain Carboxylic Acids by Anaerobic Fermentation of Glycerol Using a Bioaugmented Open Culture. Biomass and Bioenergy, v. 118, 1-7. https://doi.org/10.1016/j.biombioe.2018.07.023

Daneshvar, E.; Zarrinmehr, M.J.; Koutra, E.; Kornaros, M.; Farhadian, O.; Bhatnagar, A., 2019. Sequential Cultivation of Microalgae in Raw and Recycled Dairy Wastewater: Microalgal Growth, Wastewater Treatment and Biochemical Composition. Bioresource Technology, v. 273, 556-564. https://doi.org/10.1016/j.biortech.2018.11.059

De-Bashan, L.E.; Bashan, Y., 2004. Recent Advances in Removing Phosphorus from Wastewater and Its Future Use as Fertilizer (1997-2003). Water Research, v. 38, (19), 4222-4246. https://doi.org/10.1016/j.watres.2004.07.014

Demirel, B.; Örok, M.; Hot, E.; Erkişi, S.; Albükrek, M.; Onay, T.T., 2013. Recovery of Biogas as a Source of Renewable Energy from Ice-Cream Production Residues and Wastewater. Environmental Technology, v. 34, (13-14), 2099-2104. https://doi.org/10.1080/09593330.2013.774055

Demirel, B.; Yenigun, O.; Onay, T.T., 2005. Anaerobic Treatment of Dairy Wastewaters: A Review. Process Biochemistry, v. 40, (8), 2583-2595. https://doi.org/10.1016/j.procbio.2004.12.015

Ding, W.; Cheng, S.; Yu, L.; Huang, H., 2017. Effective Swine Wastewater Treatment by Combining Microbial Fuel Cells with Flocculation. Chemosphere, v. 182, 567-573. https://doi.org/10.1016/j.chemosphere.2017.05.006

Dornelles, H.S.; Matsuoka, M.; Binelo, L.A.; Pauvels, L.A.; Caron, C.M.; Silva, V.R., 2017. Biomassa e Atividade Microbiana de Solos Com Aplicação de Resíduo Sólido Urbano e Dejeto Líquido de Suínos. Revista Brasileira de Ciências Ambientais (Online), (44), 18-26. https://doi.org/10.5327/z2176-947820170046

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). 2018. Anuário do Leite 2018. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) (Accessed Jan 20, 2020) at: ainfo.cnptia.embrapa.br/digital/bitstream/item/181654/1/Anuario-Leite-2018.pdf

Enitan, A.M.; Adeyemo, J.; Swalaha, F.M.; Bux, F., 2015. Anaerobic Digestion Model to Enhance Treatment of Brewery Wastewater for Biogas Production Using UASB Reactor. Environmental Modeling and Assessment, v. 20, (6), 673-685. https://doi.org/10.1007/s10666-015-9457-3

Enitan, A.M.; Kumari, S.; Odiyo, J.O.; Bux, F.; Swalaha, F.M., 2018. Principal Component Analysis and Characterization of Methane Community in a Full-Scale Bioenergy Producing UASB Reactor Treating Brewery Wastewater. Physics and Chemistry of the Earth, v. 108, 1-8. https://doi.org/10.1016/j.pce.2018.06.006

Empresa de Pesquisa Energética (EPE). 2019. Biogás no Brasil: Visão Atual e Futura. VI Fórum do Biogás, São Paulo, Brasil.

Enteshari, M.; Martínez-Monteagudo, S.I., 2018. Subcritical Hydrolysis of Ice-Cream Wastewater: Modeling and Functional Properties of Hydrolysate. Food and Bioproducts Processing, v. 111, 104-113. https://doi.org/10.1016/j.fbp.2018.08.002

Fernandes, T.A.; Naval L.P., 2017. Potencial de Utilização de Efluentes Tratados de Laticínios. Revista Brasileira de Ciências Ambientais (Online), (46), 46-59. https://doi.org/10.5327/z2176-947820170235

Fia, R.; Pereira, E.L.; Fia, F.R.L.; Emboaba, D.G.; Gomes, E.M., 2015. Start-up of Anaerobic Reactors for Slaughterhouse Wastewater Treatment. Engenharia Agrícola, v. 35, (2), 331-339. https://doi.org/10.1590/1809-4430-Eng.Agric.v35n2p331-339/2015

Food and Agriculture Organization of the United Nations (FAO). 2018. Dairy Market Review. Food and Agriculture Organization of the United Nations (Accessed January 28, 2020) at: http://www.fao.org/3/I9210EN/i9210en.pdf

García, D.; Posadas, E.; Grajeda, C.; Blanco, S.; Martínez-Páramo, S.; Acién, G.; García-Encina, P.; Bolado, S.; Muñoz, R., 2017. Comparative Evaluation of Piggery Wastewater Treatment in Algal-Bacterial Photobioreactors under Indoor and Outdoor Conditions. Bioresource Technology, v. 245, (part A), 483-490. https://doi.org/10.1016/j.biortech.2017.08.135

Ge, S.; Usack, J.G.; Spirito, C.M.; Angenent, L.T., 2015. Long-Term n-Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction. Environmental Science and Technology, v. 49, (13), 8012-8021. https://doi.org/10.1021/acs.est.5b00238

Goodwin, J.A.S.; Wase, D.A.J.; Forster, C.F., 1990. Anaerobic Digestion of Ice-Cream Wastewaters Using the UASB Process. Biological Wastes, v. 32, (2), 125-144. https://doi.org/10.1016/0269-7483(90)90077-6

Grootscholten, T.I.M.; Steinbusch, K.J.J.; Hamelers, H..V.M.; Buisman, C.J.N., 2013. High Rate Heptanoate Production from Propionate and Ethanol Using Chain Elongation. Bioresource Technology, v. 136, 715-718. https://doi.org/10.1016/j.biortech.2013.02.085

Hakimi, M.H.; Jegatheesan, V.; Navaratna, D., 2020. The Potential of Adopting Struvite Precipitation as a Strategy for the Removal of Nutrients from Pre-AnMBR Treated Abattoir Wastewater. Journal of Environmental Management, v. 259, 109783. https://doi.org/10.1016/j.jenvman.2019.109783

Hao, X.; Wang, C.; Van Loosdrecht, M.C.M.; Hu, Y., 2013. Looking beyond Struvite for P-Recovery. Environmental Science and Technology, v. 47, (10), 4965-4966. https://doi.org/10.1021/es401140s

Hawkes, F.R.; Donnelly, T.; Anderson, G.K., 1995. Comparative Performance of Anaerobic Digesters Operating on Ice-Cream Wastewater. Water Research, v. 29, (2), 525-533. https://doi.org/10.1016/0043-1354(94)00163-2

Hu, W.C.; Thayanithy, K.; Forster, C. F., 2002. A Kinetic Study of the Anaerobic Digestion of Ice-Cream Wastewater. Process Biochemistry, v. 37, (9), 965-971. https://doi.org/10.1016/S0032-9592(01)00310-7

Hung, C.-H.; Chang, Y.-T.; Chang, Y.-J., 2011. Roles of Microorganisms Other than Clostridium and Enterobacter in Anaerobic Fermentative Biohydrogen Production Systems - A Review. Bioresource Technology, v. 102, (18), 8437-8444. https://doi.org/10.1016/j.biortech.2011.02.084

Jensen, P.D., Yap, S.D.; Boyle-Gotla, A.; Janoschka, J.; Carney, C.; Pidou, M.; Batstone, D.J., 2015. Anaerobic Membrane Bioreactors Enable High Rate Treatment of Slaughterhouse Wastewater. Biochemical Engineering Journal, 97, 132-141. https://doi.org/10.1016/j.bej.2015.02.009

Jürgensen, L.; Ehimen, E.A.; Born, J.; Holm-Nielsen, J.B. 2018. A Combination Anaerobic Digestion Scheme for Biogas Production from Dairy Effluent—CSTR and ABR, and Biogas Upgrading. Biomass and Bioenergy, 111, 241-247. https://doi.org/10.1016/j.biombioe.2017.04.007

Justina, M.D.; Muniz, B.R.B.; Bröring, M.M.; Costa, V.J.; Skoronski, E. 2018. Using Vegetable Tannin and Polyaluminium Chloride as Coagulants for Dairy Wastewater Treatment: A Comparative Study. Journal of Water Process Engineering, v. 25, 173-181. https://doi.org/10.1016/j.jwpe.2018.08.001

Karadag, D.; Köroʇlu, O.E.; Ozkaya, B.; Cakmakci, M., 2015. A Review on Anaerobic Biofilm Reactors for the Treatment of Dairy Industry Wastewater. Process Biochemistry, v. 50, (2), 262-271. https://doi.org/10.1016/j.procbio.2014.11.005

Khan, I.U.; Othman, M.H.D.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Wan Azelee, I., 2017. Biogas as a Renewable Energy Fuel – A Review of Biogas Upgrading, Utilisation and Storage. Energy Conversion and Management, v. 150, 277-294. https://doi.org/10.1016/j.enconman.2017.08.035

Kharbanda, A.; Prasanna, K., 2016. Extraction of Nutrients from Dairy Wastewater in the Form of Map (Magnesium Ammonium Phosphate) and Hap (Hydroxyapatite). Rasayan Journal of Chemistry, v. 9, (2), 215-221

Kleerebezem, R.; Joosse, B.; Rozendal, R.; Van Loosdrecht, M.C.M., 2015. Anaerobic Digestion without Biogas ? Reviews in Environmental Science and Bio/Technology, v. 14, (4), 787-801. https://doi.org/10.1007/s11157-015-9374-6

Konstantas, A.; Stamford, L.; Azapagic, A. 2019. Environmental Impacts of Ice Cream. Journal of Cleaner Production, v. 209, 259-272. https://doi.org/10.1016/j.jclepro.2018.10.237

Kothari, R.; Kumar, V.; Pathak, V.V.; Tyagi, V.V., 2017. Sequential Hydrogen and Methane Production with Simultaneous Treatment of Dairy Industry Wastewater: Bioenergy Profit Approach. International Journal of Hydrogen Energy, v. 42, (8), 4870-4879. https://doi.org/10.1016/j.ijhydene.2016.11.163

Krishan, A.; Srivastava, A., 2015. Recovery of Nutrients from Dairy Wastewater by Struvite Crystallization. International Journal of Engineering Research and General Science, v. 3, (5), 591-597.

Kumar, R.; Pal, P., 2015. Assessing the Feasibility of N and P Recovery by Struvite Precipitation from Nutrient-Rich Wastewater: A Review. Environmental Science and Pollution Research, v. 22, 17453-17464. https://doi.org/10.1007/s11356-015-5450-2

Kwon, G.; Kang, J.; Nam, J.H.; Kim, Y.O.; Jahng, D., 2018. Recovery of Ammonia through Struvite Production Using Anaerobic Digestate of Piggery Wastewater and Leachate of Sewage Sludge Ash. Environmental Technology, v. 39, (7), 831-842. https://doi.org/10.1080/09593330.2017.1312550

Lavanya, A.; Thanga, R.S.K., 2020. Effective Removal of Phosphorous from Dairy Wastewater by Struvite Precipitation: Process Optimization Using Response Surface Methodology and Chemical Equilibrium Modeling. Separation Science and Technology, v. 56, (2), 395-410. https://doi.org/10.1080/01496395.2019.1709080

Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C., 2014. A Review of the Production and Applications of Waste-Derived Volatile Fatty Acids. Chemical Engineering Journal, v. 235, 83-99. https://doi.org/10.1016/j.cej.2013.09.002

Li, S.; Zeng, W.; Wang, B.; Xu, H.; Peng, Y., 2020. Obtaining Three Cleaner Products under an Integrated Municipal Sludge Resources Scheme: Struvite, Short-Chain Fatty Acids and Biological Activated Carbon. Chemical Engineering Journal, v. 380, 122567. https://doi.org/10.1016/j.cej.2019.122567

López-Garzón, C.S.; Straathof, A.J.J., 2014. Recovery of Carboxylic Acids Produced by Fermentation. Biotechnology Advances, v. 32, (5), 873-904. https://doi.org/10.1016/j.biotechadv.2014.04.002

Lu, H.; Peng, M.; Zhang, G.; Li, B.; Li, Y., 2019. Brewery Wastewater Treatment and Resource Recovery through Long Term Continuous-Mode Operation in Pilot Photosynthetic Bacteria-Membrane Bioreactor. Science of the Total Environment, v. 646, 196-205. https://doi.org/10.1016/j.scitotenv.2018.07.268

Lu, Q.; Zhou, W.; Min, M.; Ma, X.; Ma, Y.; Chen, P.; Zheng, H.; Doans, Y.T.T.; Liu, H.; Chen, C.; Urriola, P.E.; Shurson, G.C., Ruan, R., 2016. Mitigating Ammonia Nitrogen Deficiency in Dairy Wastewaters for Algae Cultivation. Bioresource Technology, v. 201, 33-40. https://doi.org/10.1016/j.biortech.2015.11.029

Lu, W.; Wang, Z.; Wang, X.; Yuan, Z. 2015. Cultivation of Chlorella Sp. Using Raw Dairy Wastewater for Nutrient Removal and Biodiesel Production: Characteristics Comparison of Indoor Bench-Scale and Outdoor Pilot-Scale Cultures. Bioresource Technology, v. 192, 382-388. https://doi.org/10.1016/j.biortech.2015.05.094

Luo, P.; Liu, F.; Zhang, S.; Li, H.; Yao, R.; Jiang, Q.; Xiao, R.; Wu, J., 2018. Nitrogen Removal and Recovery from Lagoon-Pretreated Swine Wastewater by Constructed Wetlands under Sustainable Plant Harvesting Management. Bioresource Technology, v. 258, 247-254. https://doi.org/10.1016/j.biortech.2018.03.017

Marcusso, E.F.; Müller, C.V., 2017. A Cerveja no Brasil: o Ministério da Agricultura Informando e Esclarecendo. Ministério da Agricultura, Pecuária e Abastecimento (Accessed February 5, 2020) at: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/publicacoes/a-cerveja-no-brasil-28-08.pdf

Martí-Herrero, J.; Alvarez, R.; Flores, T., 2018. Evaluation of the Low Technology Tubular Digesters in the Production of Biogas from Slaughterhouse Wastewater Treatment. Journal of Cleaner Production, v. 199, 633-642. https://doi.org/10.1016/j.jclepro.2018.07.148

Metcalf e Eddy. 2016. Tratamento de Efluentes e Recuperação de Recursos. 5. ed. AMGH, Porto Alegre, 1080 pp.

Mohammed, A.J.; Ismail, Z.Z., 2018. Slaughterhouse Wastewater Biotreatment Associated with Bioelectricity Generation and Nitrogen Recovery in Hybrid System of Microbial Fuel Cell with Aerobic and Anoxic Bioreactors. Ecological Engineering, v. 125, 119-130. https://doi.org/10.1016/j.ecoleng.2018.10.010

Monballiu, A.; Desmidt, E.; Ghyselbrecht, K.; Meesschaert, B., 2018. Phosphate Recovery as Hydroxyapatite from Nitrified UASB Effluent at Neutral PH in a CSTR. Journal of Environmental Chemical Engineering, v. 6, (4), 4413-4422. https://doi.org/10.1016/j.jece.2018.06.052

Moraes, L.S.; Kronemberger, F.A.; Ferraz, H.C.; Habert, A.C., 2015. Liquid-Liquid Extraction of Succinic Acid Using a Hollow Fiber Membrane Contactor. Journal of Industrial and Engineering Chemistry, v. 21, 206-211. https://doi.org/10.1016/j.jiec.2014.02.026

Morais, N.W.S., 2019. Recuperação de Subprodutos (Metano e Ácidos Carboxílicos) Em Sistemas Anaeróbios Tratando Resíduos Agroindustriais. Dissertation, Programa de Pós-Graduação em Engenharia Civil – Saneamento Ambiental, Universidade Federal do Ceará, Fortaleza (Accessed February 15, 2020) at: http://www.repositorio.ufc.br/bitstream/riufc/40490/3/2019_dis_nwsmorais.pdf

Morais, N.W.S.; Coelho, M.M.H.; Ferreira, T.J.T.; Pereira, E.L.; Leitão, R.C.; Santos, A.B., 2021. A Kinetic Study on Carboxylic Acids Production Using Bovine Slaughterhouse Wastewater: A Promising Substrate for Resource Recovery in Biotechnological Processes. Bioprocess and Biosystems Engineering, v. 44, 271-282. https://doi.org/10.1007/s00449-020-02440-3

Morais, N.W.S.; Coelho, M.M.H.; Silva, A.S.; Pereira, E.L.; Leitão, R.C.; Santos, A.B., 2020a. Kinetic Modeling of Anaerobic Carboxylic Acid Production from Swine Wastewater. Bioresource Technology, v. 297, 122520. https://doi.org/10.1016/j.biortech.2019.122520

Morais, N.W.S.; Coelho, M.M.H.; Silva, F.S.S.; Pereira, E.L.; Santos, A.B., 2020b. Caracterização Físico-Química e Determinação de Coeficientes Cinéticos Aeróbios de Remoção Da Matéria Orgânica de Águas Residuárias Agroindustriais. Engenharia Sanitária e Ambiental, v. 25, (3), 489-500. https://doi.org/10.1590/S1413-4152202020190220

Morais, N.W.S.; Santos, A.B., 2019. Análise dos padrões de lançamento de efluentes em corpos hídricos e de reúso de águas residuárias de diversos estados do Brasil. Revista DAE, v. 67, (215), 40-55. https://doi.org/10.4322/dae.2019.004

Moscoviz, R.; Trably, E.; Bernet, N.; Carrère, H., 2018. The Environmental Biorefinery: State-of-the-Art on the Production of Hydrogen and Value-Added Biomolecules in Mixed-Culture Fermentation. Green Chemistry, v. 20, (14), 3159-3179. https://doi.org/10.1039/c8gc00572a

Mota, C.J.A.; Silva, C.X.A.; Gonçalves, V.L.C., 2009. Glycerochemistry: New Products and Processes from Glycerin of Biodiesel Production. Química Nova, v. 32, (3), 639-648. https://doi.org/10.1590/s0100-40422009000300008

Moukazis, I.; Pellera, F.M.; Gidarakos, E., 2018. Slaughterhouse By-Products Treatment Using Anaerobic Digestion. Waste Management, v. 71, 652-662. https://doi.org/10.1016/j.wasman.2017.07.009

Muhmood, A.; Lu, J.; Dong, R.; Wu, S., 2019. Formation of Struvite from Agricultural Wastewaters and Its Reuse on Farmlands: Status and Hindrances to Closing the Nutrient Loop. Journal of Environmental Management, v. 230, 1-13. https://doi.org/10.1016/j.jenvman.2018.09.030

MUÑOZ, R.; MEIER, L.; DIAZ, I.; JEISON, D., 2015. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Reviews in Environmental Science and Biotechnology, v. 14, (4), 727-759. https://doi.org/10.1007/s11157-015-9379-1

Murcia, J.J.; Hernández-Laverde, M.; Rojas, H.; Muñoz, E.; Navío, J.A.; Hidalgo, M.C., 2018. Study of the Effectiveness of the Flocculation-Photocatalysis in the Treatment of Wastewater Coming from Dairy Industries. Journal of Photochemistry and Photobiology A: Chemistry, v. 358, 256-264. https://doi.org/10.1016/j.jphotochem.2018.03.034

Nagarajan, D.; Kusmayadi, A.; Yen, H.W.; Dong, C.D.; Lee, D.J.; Chang, J.S., 2019. Current Advances in Biological Swine Wastewater Treatment Using Microalgae-Based Processes. Bioresource Technology, v. 289, 121718. https://doi.org/10.1016/j.biortech.2019.121718

Numviyimana, C.; Warchoł, J.; Izydorczyk, G.; Baśladyńska, S.; Chojnacka, K., 2020. Struvite Production from Dairy Processing Wastewater: Optimizing Reaction Conditions and Effects of Foreign Ions through Multi-Response Experimental Models. Journal of the Taiwan Institute of Chemical Engineers, v. 117, 182-189. https://doi.org/10.1016/j.jtice.2020.11.031

Olajire, A.A., 2012. The Brewing Industry and Environmental Challenges. Journal of Cleaner Production, v. 256, 102817. https://doi.org/10.1016/j.jclepro.2012.03.003

Oliveira, J.V., Alves, M.M.; Costa, J.C., 2015. Optimization of Biogas Production from Sargassum Sp. Using a Design of Experiments to Assess the Co-Digestion with Glycerol and Waste Frying Oil. Bioresource Technology, v. 175, 480-485. https://doi.org/10.1016/j.biortech.2014.10.121

Organization for Economic Co-operation and Development (OECD); Food and Agriculture Organization of the United Nations (FAO). 2018. OECD-FAO Agricultural Outlook 2018-2027. OECD Publishing, Paris; Food and Agriculture Organization of the United Nations, Rome (Accessed Jan 18, 2020) at: https://doi.org/10.1787/agr_outlook-2018-en

Pachiega, R.; Rodrigues, M.F.; Rodrigues, C.V.; Sakamoto, I.K.; Varesche, M.B.A.; Oliveira, J.E.; Maintinguer, S.I., 2019. Hydrogen Bioproduction with Anaerobic Bacteria Consortium from Brewery Wastewater. International Journal of Hydrogen Energy, v. 44, (1), 155-163. https://doi.org/10.1016/j.ijhydene.2018.02.107

Pan, C.; Tan, G.Y.A.; Ge, L.; Chen, C.L.; Wang, J.Y., 2019. Two-Stage Microbial Conversion of Crude Glycerol to 1,3-Propanediol and Polyhydroxyalkanoates after Pretreatment. Journal of Environmental Management, v. 232, 615-624. https://doi.org/10.1016/j.jenvman.2018.11.118

Pastor, L., Mangin, D.; Barat, R.; Seco, A., 2008. A Pilot-Scale Study of Struvite Precipitation in a Stirred Tank Reactor: Conditions Influencing the Process. Bioresource Technology, v. 99, (14), 6285-6291. https://doi.org/10.1016/j.biortech.2007.12.003

Pereira, E.L.; Borges, A.C.; Heleno, F.F.; Oliveira, K.R.; Silva, G.J.; Mounteer, A.H., 2019. Central Composite Rotatable Design for Startup Optimization of Anaerobic Sequencing Batch Reactor Treating Biodiesel Production Wastewater. Journal of Environmental Chemical Engineering, v. 7, (3), 103038. https://doi.org/10.1016/j.jece.2019.103038

Pereira, E.L.; Campos, C.M.M.; Moterani, F., 2009. Efeitos Do PH, Acidez e Alcalinidade Na Microbiota de Um Reator Anaeróbio de Manta de Lodo (UASB) Tratando Efluentes de Suinocultura. Ambiente & Água, v. 4, (3), 157-168. https://doi.org/10.4136/ambi-agua.109

Pereira, E.L.; Paiva, T.C.; Silva, F.T., 2016. Physico-Chemical and Ecotoxicological Characterization of Slaughterhouse Wastewater Resulting from Green Line. Water, Air, & Soil Pollution, v. 227, 199. https://doi.org/10.1007/s11270-016-2873-4

Plácido, J.; Zhang, Y., 2018. Production of Volatile Fatty Acids from Slaughterhouse Blood by Mixed-Culture Fermentation. Biomass Conversion and Biorefinery, v. 8, (3), 621-634. https://doi.org/10.1007/s13399-018-0313-y

Rabinovich, A.; Rouff, A.A.; Lew, B.; Ramlogan, M.V., 2018. Aerated Fluidized Bed Treatment for Phosphate Recovery from Dairy and Swine Wastewater. ACS Sustainable Chemistry and Engineering, v. 6, (1), 652-659. https://doi.org/10.1021/acssuschemeng.7b02990

Ranade, V.V.; Bhandari, V.M., 2014. Industrial Wastewater Treatment, Recycling, and Reuse: An Overview. Industrial Wastewater Treatment, Recycling and Reuse, 1-80. https://doi.org/10.1016/B978-0-08-099968-5.00001-5

Ren, H.; Tuo, J.; Addy, M.M.; Zhang, R.; Lu, Q.; Anderson, E.; Chen, P.; Ruan, R., 2017. Cultivation of Chlorella Vulgaris in a Pilot-Scale Photobioreactor Using Real Centrate Wastewater with Waste Glycerol for Improving Microalgae Biomass Production and Wastewater Nutrients Removal. Bioresource Technology, 245, (part A), 1130-1138. https://doi.org/10.1016/j.biortech.2017.09.040

Shashvatt, U.; Benoit, J.; Aris, H.; Blaney, L., 2018. CO2-Assisted Phosphorus Extraction from Poultry Litter and Selective Recovery of Struvite and Potassium Struvite. Water Research, v. 143, 19-27. https://doi.org/10.1016/j.watres.2018.06.035

Shi, X.Y.; Jin, D.W.; Sun, Q.Y.; Li, W.W., 2010. Optimization of Conditions for Hydrogen Production from Brewery Wastewater by Anaerobic Sludge Using Desirability Function Approach. Renewable Energy, v. 35, (7), 1493-1498. https://doi.org/10.1016/j.renene.2010.01.003

Show, K.Y.; Lee, D.J., 2017. Anaerobic Treatment Versus Aerobic Treatment. Current Developments in Biotechnology and Bioengineering: Biological Treatment of Industrial Effluents, 205-230. https://doi.org/10.1016/B978-0-444-63665-2.00008-4

Silva, A.N.; Macêdo, W.V.; Sakamoto, I.K.; Pereyra, D.A.D.; Mendes, C.O.; Maintinguer, S.I.; Caffaro Filho, R.A.; Damianovic, M.H.Z.; Varesche, M.B.A.; Amorim, E.L.C., 2019. Biohydrogen Production from Dairy Industry Wastewater in an Anaerobic Fluidized-Bed Reactor. Biomass and Bioenergy, v. 120, 257-264. https://doi.org/10.1016/J.BIOMBIOE.2018.11.025

Silva, A.S.; Morais, N.W.S.; Coelho, M.M.H.; Pereira, E.L.; Santos, A.B., 2020a. Potentialities of Biotechnological Recovery of Methane, Hydrogen and Carboxylic Acids from Agro-Industrial Wastewaters. Bioresource Technology Reports, v. 10, 100406. https://doi.org/10.1016/j.biteb.2020.100406

Silva, A.S.; Morais, N.W.S.; Pereira, E.L.; Leitão, R.C.; Santos, A.B., 2019. Produção de Ácidos Carboxílicos de Alto Valor Agregado a Partir Da Água Residuária de Cervejaria. In: 2o Seminário Nacional - ETEs Sustentáveis. Fortaleza, 1-4.

Silva, A.S.; Morais, N.W.S.; Pereira, E.L.; Santos, A.B. 2020b. Fatores Que Influenciam a Produção de Ácidos Carboxílicos a Partir de Resíduos Agroindustriais. Engenharia Sanitária e Ambiental, v. 25, (5), 655-666. https://doi.org/10.1590/s1413-4152202020190174

Silva, F.M.S.; Oliveira, L.B.; Mahler, C.F.; Bassin, J.P., 2017. Hydrogen Production through Anaerobic Co-Digestion of Food Waste and Crude Glycerol at Mesophilic Conditions. International Journal of Hydrogen Energy, v. 42, (36), 22720-22729. https://doi.org/10.1016/j.ijhydene.2017.07.159

SIRIWONGRUNGSON, V.; ZENG, R.J.; ANGELIDAKI, I., 2007. Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Research, v. 41, (18), 4204-4210. https://doi.org/10.1016/j.watres.2007.05.037

Sittijunda, S.; Reungsang, A., 2012. Biohydrogen Production from Waste Glycerol and Sludge by Anaerobic Mixed Cultures. International Journal of Hydrogen Energy, v. 37, (18), 13789-13796. https://doi.org/10.1016/j.ijhydene.2012.03.126

Sittijunda, S.; Reungsang, A., 2017. Fermentation of Hydrogen, 1,3-Propanediol and Ethanol from Glycerol as Affected by Organic Loading Rate Using up-Flow Anaerobic Sludge Blanket (UASB) Reactor. International Journal of Hydrogen Energy, v. 42, (45), 27558-27569. https://doi.org/10.1016/j.ijhydene.2017.05.149

Sivagurunathan, P.; Sen, B.; Lin, C.Y., 2015. High-Rate Fermentative Hydrogen Production from Beverage Wastewater. Applied Energy, v. 147, 1-9. https://doi.org/10.1016/j.apenergy.2015.01.136

Song, X.; Luo, W.; Hai, F.I.; Price, W.E.; Guo, W.; Ngo, H.H.; Nghiem, L.D., 2018. Resource Recovery from Wastewater by Anaerobic Membrane Bioreactors: Opportunities and Challenges. Bioresource Technology, v. 270, 669-677. https://doi.org/10.1016/j.biortech.2018.09.001

Souza, A.C.; Orrico, S.R.M., 2016. Consumo de Água Na Indústria de Abate de Bovinos Do Estado Da Bahia. Revista Brasileira de Ciências Ambientais (Online), (42), 26-36. https://doi.org/10.5327/z2176-947820160035

Sreyvich, S.; Petrus, H.T.B.M.; Purnomo, C.W., 2020. Nutrient Recovery from Slaughterhouse Wastewater. IOP Conference Series: Materials Science and Engineering, v. 778, 012136. https://doi.org/10.1088/1757-899X/778/1/012136

STATISTA. 2019a. Beer Production Worldwide from 1998 to 2017 (in Billion Hectoliters). (Accessed January 22, 2020) at: https://www.statista.com/statistics/270275/worldwide-beer-production/

STATISTA. 2019b. Size of the Global Ice Cream Market from 2013 to 2024 (in Billion U.S. Dollars).

Steinbusch, K.J.J.; Hamelers, H.V.M.; Plugge, C.M.; Buisman, C.J.N., 2011. Biological Formation of Caproate and Caprylate from Acetate: Fuel and Chemical Production from Low Grade Biomass. Energy and Environmental Science, v. 4, (1), 216-224. https://doi.org/10.1039/c0ee00282h

Strazzera, G.; Battista, F.; Garcia, N.H.; Frison, N.; Bolzonella, D., 2018. Volatile Fatty Acids Production from Food Wastes for Biorefinery Platforms: A Review. Journal of Environmental Management, v. 226, 278-288. https://doi.org/10.1016/j.jenvman.2018.08.039

Strömberg, S.; Nistor, M.; Liu, J., 2014. Towards Eliminating Systematic Errors Caused by the Experimental Conditions in Biochemical Methane Potential (BMP) Tests. Waste Management, v. 34, (11), 1939-1948. https://doi.org/10.1016/j.wasman.2014.07.018

Sun, C.; Cao, W.; Liu, R., 2015. Kinetics of Methane Production from Swine Manure and Buffalo Manure. Applied Biochemistry and Biotechnology, v. 177, 985-995. https://doi.org/10.1007/s12010-015-1792-y

Suto, R.; Ishimoto, C.; Chikyu, M.; Aihara, Y.; Matsumoto, T.; Uenishi, H.; Yasuda, T.; Fukumoto, Y.; Waki, M., 2017. Anammox Biofilm in Activated Sludge Swine Wastewater Treatment Plants. Chemosphere, v. 167, 300-307. https://doi.org/10.1016/j.chemosphere.2016.09.121

Suzuki, K.; Tanaka, Y.; Kuroda, K.; Hanajima, D.; Fukumoto, Y.; Yasuda, T.; Waki, M., 2007. Removal and Recovery of Phosphorous from Swine Wastewater by Demonstration Crystallization Reactor and Struvite Accumulation Device. Bioresource Technology, v. 98, (8), 1573-1578. https://doi.org/10.1016/j.biortech.2006.06.008

Tao, W.; Fattah, K.P.; Huchzermeier, M.P., 2016. Struvite Recovery from Anaerobically Digested Dairy Manure: A Review of Application Potential and Hindrances. Journal of Environmental Management, v. 169, 46-57. https://doi.org/10.1016/j.jenvman.2015.12.006

Union Zur Förderung Von Oel- Und Proteinpflanzen E.V. (UFOP). 2017. Report on Global Market Supply 2017/2018. Union Zur Förderung Von Oel- Und Proteinpflanzen E.V. (Accessed January 25, 2020) at: https://www.ufop.de/files/3515/1515/2657/UFOP_Report_on_Global_Market_Supply_2017-2018.pdf

United States Department of Agriculture (USDA). 2018. Livestock and Poultry: World Markets and Trade. United States Department of Agriculture.

Valente, M.C. 1999. Síntese de Hidroxiapatita e Sua Aplicação Como Biomaterial. Thesis, Pós-Graduação em Tecnologia Nuclear, Universidade de São Paulo, São Paulo (Accessed February 20, 2020) at: http://pelicano.ipen.br/PosG30/TextoCompleto/Magali de Campos Valente_D.pdf

Viana, M.B., Dams, R.I.; Pinheiro, B.M.; Leitão, R.C.; Santaella, S.T.; Santos, A.B., 2019. The Source of Inoculum and the Method of Methanogenesis Inhibition Can Affect Biological Hydrogen Production from Crude Glycerol. Bioenergy Research, v. 12, (3), 733-742. https://doi.org/10.1007/s12155-019-09994-5

Wagner, R.C., Regan, J.M.; Oh, S.E.; Zuo, Y.; Logan, B.E., 2009. Hydrogen and Methane Production from Swine Wastewater Using Microbial Electrolysis Cells. Water Research, v. 43, (5), 1480-1488. https://doi.org/10.1016/j.watres.2008.12.037

Wang, F.; Fu, R.; Lv, H.; Zhu, G.; Lu, B.; Zhou, Z.; Wu, X.; Chen, H., 2019. Phosphate Recovery from Swine Wastewater by a Struvite Precipitation Electrolyzer. Scientific Reports, v. 9, (1), 8893. https://doi.org/10.1038/s41598-019-45085-3

Wang, J.; Burken, J.G.; Zhang, X.J.; Surampalli, R., 2005. Engineered Struvite Precipitation: Impacts of Component-Ion Molar Ratios and PH. Journal of Environment Engineering, v. 131, (10), 1433-1340. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:10(1433)

Wang, S.; Hawkins, G.L.; Kiepper, B.H.; Das, K.C., 2018. Treatment of Slaughterhouse Blood Waste Using Pilot Scale Two-Stage Anaerobic Digesters for Biogas Production. Renewable Energy, v. 126, 552-562. https://doi.org/10.1016/j.renene.2018.03.076

Wang, Y.; Guo, W.; Yen, H.W.; Ho, S.H.; Lo, Y.C.; Cheng, C.L.; Ren, N.; Chang, J.S., 2015. Cultivation of Chlorella Vulgaris JSC-6 with Swine Wastewater for Simultaneous Nutrient/COD Removal and Carbohydrate Production. Bioresource Technology, v. 198, 619-625. https://doi.org/10.1016/j.biortech.2015.09.067

Xiao, D.; Huang, H.; Zhang, P.; Gao, Z.; Zhao, N., 2018. Utilizing the Supernatant of Waste Sulfuric Acid after Dolomite Neutralization to Recover Nutrients from Swine Wastewater. Chemical Engineering Journal, v. 337, 265-274. https://doi.org/10.1016/j.cej.2017.12.097

Yang, H.; Deng, L.; Liu, G.; Yang, D.; Liu, Y.; Chen, Z. 2016. A Model for Methane Production in Anaerobic Digestion of Swine Wastewater. Water Research, v. 102, 464-474. https://doi.org/10.1016/j.watres.2016.06.060

Yazdani, S.S.; Gonzalez, R., 2007. Anaerobic Fermentation of Glycerol: A Path to Economic Viability for the Biofuels Industry. Current Opinion in Biotechnology, v. 18, (3), 213-219. https://doi.org/10.1016/j.copbio.2007.05.002

Yin, J.; Yu, X.; Wang, K.; Shen, D., 2016. Acidogenic Fermentation of the Main Substrates of Food Waste to Produce Volatile Fatty Acids. International Journal of Hydrogen Energy, v. 41, (46), 21713-21720. https://doi.org/10.1016/j.ijhydene.2016.07.094

Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G., 2018. Water-Energy-Food Nexus: Concepts, Questions and Methodologies. Journal of Cleaner Production, v. 195, 625-639. https://doi.org/10.1016/j.jclepro.2018.05.194

Downloads

Published

2021-06-23

How to Cite

Sales Morais, N. W., Coelho, M. M. H., e Silva, A. de S., & Pereira, E. L. (2021). Study on Brazilian agribusiness wastewaters: composition, physical‑chemical characterization, volumetric production and resource recovery. Revista Brasileira De Ciências Ambientais, 56(2), 248–265. https://doi.org/10.5327/Z21769478875