Stock and indices of carbon management under different soil use systems

Authors

DOI:

https://doi.org/10.5327/Z21769478867

Keywords:

soil quality; labile carbon; environmental assessment.

Abstract

The aim of this study was to evaluate the stock of total organic carbon (TOC) and to perform the physical-granulometric fractionation of soil organic matter (SOM) in different management systems (MS). Three MS and one reference area of Native Forest (NF) were studied, and the three systems were sugarcane (SC), permanent pasture (PP) and no-tillage system (NTS). Soil samples were collected in the 0–0.05, 0.05–0.10, 0.10–0.20-m layers. Soil density (Sd), TOC, stratification index (SI), carbon stock (StockC), variation in StockC (ΔStockC), carbon content of particulate organic matter (C-POM) and mineral organic matter (C-MOM), carbon stock index (CSI), lability (L), lability index (LI), and carbon management index (CMI) were determined. The MS presented higher Sd than the NF area. The NF area had higher TOC contents in the first layers, reaching 25.40 g kg-1 in the 0–0.05-m layer, with the PP area having higher values than the NF in the 0.10–0.20-m layer. The NF area showed the highest levels of C-POM (15.25 g kg-1) and C-MOM (10.15 g kg-1) in the first layer. In the 0.10–0.20-m layer, the PP and NTS systems were superior to the others. Regarding the C-MOM content, SC and PP showed higher levels in the 0.10–0.20-m layer. The highest CMI values were observed in the NTS and PP areas in the 0.10–0.20 m layer. The MS increased the Sd and reduced the TOC levels. The different MS modified the POM fraction, and the MOM fraction was most impacted by the SC area. The lability of the SOM was altered by the MS in the most superficial layers.

Downloads

Download data is not yet available.

References

Assunção, S.A.; Pereira, M.G.; Rosset, J.S.; Berbara, R.L.L.; García, A.C., 2019. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of the Total Environment, v. 658, 901-911. https://doi.org/10.1016/j.scitotenv.2018.12.271.

Awe, G.O.; Reichert, J.M.; Fontanela, E., 2020. Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil and Tillage Research, v. 196, 104447. https://doi.org/10.1016/j.still.2019.104447.

Barbosa, E.A.A.; Matsura, E.E.; Santos, L.N.S.; Nazário, A.A.; Gonçalves, I.Z.; Feitosa, D.R.C., 2018. Soil attributes and quality under treated domestic sewage irrigation in sugarcane. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 22, (2), 137-142. https://doi.org/10.1590/1807-1929/agriambi.v22n2p137-142.

Batista, I.; Pereira, M.G.; Correia, M.E.F.; Bieluczyk, W.; Schiavo, J.A.; Rows, J.R.C., 2013. Teores e estoque de carbono em frações lábeis e recalcitrantes da matéria orgânica do solo sob integração lavoura-pecuária no bioma Cerrado. Semina: Ciências Agrárias, v. 34, (6 Suppl. 1), 3377-3388. http://dx.doi.org/10.5433/1679-0359.2013v34n6Supl1p3377.

Bayer, C.; Mielniczuk, J.; Martin-Neto, L.; Ernani, P.R., 2002. Stocks and humification degree of organic matter fractions as afeccted by no-tillage on a subtropical soil. Plant and Soil, v. 238, (1), 133-140. https://doi.org/10.1023/A:1014284329618.

Bertollo, A.M.; Levien, R., 2019. Compactação do solo em Sistema de Plantio Direto na palha. Pesquisa Agropecuária Gaúcha, v. 25, (3), 208-218. https://doi.org/10.36812/pag.2019253208-218.

Besen, R.M.; Ribeiro, R.H.; Monteiro, A.N.T.R.; Iwasaki, G.S.; Piva, J.T., 2018. Práticas conservacionistas do solo e emissão de gases do efeito estufa no Brasil. Scientia Agropecuaria, v. 9, (3), 429-439. http://dx.doi.org/10.17268/sci.agropecu.2018.03.15.

Blair, G.J.; Lefroy, B.; Lisle, L., 1995. Soil carbon fractions, based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, v. 46, (7), 1459-1466. https://doi.org/10.1071/AR9951459.

Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; Goede, R., 2019. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, v. 99, 38-50. https://doi.org/10.1016/j.ecolind.2018.12.008.

Bordonal, R.O.; Menandro, L.M.S.; Barbosa, L.C.; Lal, R.; Milori, D.M.B.P.; Kolln, O.T.; Franco, H.C.J.; Carvalho, J.L.N., 2018. Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, v. 328, 79-90. https://doi.org/10.1016/j.geoderma.2018.05.003.

Borges, C.; Ribeiro, B.T.; Wendling, B.; Cabral, D.A., 2015. Agregação do solo, carbono orgânico e emissão de CO2 em áreas sob diferentes usos no Cerrado, região do Triângulo Mineiro. Revista Ambiente & Água, v. 10, (3), 660-675. https://doi.org/10.4136/ambi-agua.1573.

Borges, L.D.A.B.; Ramos, M.L.G.; Fernandes, P.M.; Carneiro, M.A.C.; Silva, A.M.M., 2019. Organic cultivation of sugarcane restores soil organic carbon and nitrogen. Organic Agriculture, v. 9, (4), 435-444. https://doi.org/10.1007/s13165-018-0234-x.

Bueno, J.M.M.; Dalmolin, R.S.D.; Miguel, P., 2017. Frações do carbono orgânico do solo sob diferentes usos da terra em áreas de agricultura familiar. Revista Brasileira de Agroecologia, v. 12, (3), 194-201.

Cambardella, C.A.; Elliott, E.T., 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, v. 56, (3), 777-783. https://doi.org/10.2136/sssaj1992.03615995005600030017x.

Claessen, M.E.C., 1997. Manual de métodos de análise de solo. 2. ed. Embrapa, Rio de Janeiro, 212 pp.

Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E., 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, v. 12, (12), 989-994. https://doi.org/10.1038/s41561-019-0484-6.

Cruz, C.D., 2006. Programa genes: biometria. Editora da UFV, Viçosa, 382 pp.

Ellert, B.H.; Bettany, J.R., 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal Soil Science, v. 75, (4), 529-538. https://doi.org/10.4141/cjss95-075.

Falcão, K.S.; Monteiro, F.N.; Ozório, J.M.B.; Souza, C.B.S.; Farias, P.G.S.; Menezes, R.S.; Panachuki, E.; Rosset, J.S., 2020. Estoque de carbono e agregação do solo sob diferentes sistemas de uso no Cerrado. Revista Brasileira de Ciências Ambientais (Online), v. 55, (2), 242-255. https://doi.org/10.5327/Z2176-947820200695.

Ferreira, C.R.; Silva Neto, E.C.; Pereira, M.G.; Guedes, J.N.; Rosset, J.S.; Anjos, L.H.C., 2020. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil & Tillage Research, v. 198, 104533. https://doi.org/10.1016/j.still.2019.104533.

Franzluebbers, A.J., 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil & Tillage Research, v. 66, (2), 95-106. https://doi.org/10.1016/S0167-1987(02)00018-1.

Freitas, L.; Oliveira, I.A.; Casagrande, J.C.; Silva, L.S.; Campos, M.C.C., 2018. Estoque de carbono de Latossolos em sistemas de manejo natural e alterado. Ciência Florestal, v. 28, (1), 228-239. http://dx.doi.org/10.5902/1980509831575.

Gazolla, P.R.; Guareschi, R.F.; Perin, A.; Pereira, M.G.; Rossi, C.Q., 2015. Frações da matéria orgânica do solo sob pastagem, sistema plantio direto e integração lavoura-pecuária. Semina: Ciências Agrárias, v. 36, (2), 693-704. http://dx.doi.org/10.5433/1679-0359.2015v36n2p693.

Ghosh, B.N.; Meena, V.S.; Singh, R.J.; Alam, N.M.; Patra, S.; Bhattacharyya, R.; Sharma, N.K.; Dadhwal, K.S.; Mishra, P.K., 2019. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas. Ecological Indicators, v. 105, 415-424. https://doi.org/10.1016/j.ecolind.2018.02.050.

Gomes, T.F.; Van De Broek, M.; Govers, G.; Silva, R.W.; Moraes, J.M.; Camargo, P.B.; Mazzi, E.A.; Martinelli, L.A., 2019. Runoff, soil loss, and sources of particulate organic carbon delivered to streams by sugarcane and riparian areas: An isotopic approach. Catena, v. 181, 104083. https://doi.org/10.1016/j.catena.2019.104083.

Gonçalves, V.A.; Melo, C.A.D.; Assis, I.R.; Ferreira, L.R.; Saraiva, D.T., 2019. Biomassa e atividade microbiana de solo sob diferentes sistemas de plantio e sucessões de culturas. Revista de Ciências Agrárias, v. 62, 1-8. http://dx.doi.org/10.22491/rca.2019.2611.

IUSS Working Group WRB. 2015. World Reference Base for Soil Resources (WRB), sistema universal reconhecido pela International Union of Soil Science (IUSS) e FAO. Available from: <http://www.fao.org/3/a-i3794e.pdf>. Access on May 16, 2021.

Lal, R., 2018. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, v. 24, (8), 3285-3301. https://doi.org/10.1111/gcb.14054.

Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F., 2020. Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century. Global Change Biology, v. 26, (1), 261-273. https://doi.org/10.1111/gcb.14859.

Lopes, I.M.; Assunção, S.A.; Oliveira, A.P.P.; Anjos, L.H.C.; Pereira, M.G.; Lima, E., 2017. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult. Semina: Ciências Agrárias, v. 38, (5), 2921-2932. http://dx.doi.org/10.5433/1679-0359.2017v38n5p2921.

Maia, S.M.F.; Otutumi, A.T.; Mendonça, E.S.; Neves, J.C.L. Oliveira, T.S., 2019. Combined effect of intercropping and minimum tillage on soil carbon sequestration and organic matter pools in the semiarid region of Brazil. Soil Research, v. 57, (3), 266-275. https://doi.org/10.1071/SR17336

Medeiros, A.S.; Maia, S.M.F.; Santos, T.C.; Gomes, T.C.A., 2020. Soil carbon losses in conventional farming systems due to land-use change in the Brazilian semi-arid region. Agriculture, Ecosystems & Environment, v. 287, 106690. https://doi.org/10.1016/j.agee.2019.106690.

Menandro, L.M.S.; Moraes, L.O.; Borges, C.D.; Cherubin, M.R.; Castioni, G.A.; Carvalho, J.L.N., 2019. Soil Macrofauna Responses to Sugarcane Straw Removal for Bioenergy Production. Bioenergy Research, v. 12, (4), 944-957. https://doi.org/10.1007/s12155-019-10053-2.

Nanzer, M.C.; Ensinas, S.C.; Barbosa, G.F.; Barreta, P.G.V.; Oliveira, T.P.; Silva, J.R.M.; Paulino, L.A., 2019. Estoque de carbono orgânico total e fracionamento granulométrico da matéria orgânica em sistemas de uso do solo no Cerrado. Revista de Ciências Agroveterinárias, v. 18, (1), 136-145. https://doi.org/10.5965/223811711812019136.

Oliveira, D.M.S.; Paustian, K.; Davies, C.A.; Cherubin, M.R.; Franco, A.L.C.; Cerri, C.C.; Cerri, C.E.P., 2016. Soil carbon changes in areas undergoing expansion of sugarcane into pastures in south-central Brazil. Agriculture, Ecosystems & Environment, v. 228, 38-48. https://doi.org/10.1016/j.agee.2016.05.005.

Ozório, J.M.B.; Rosset, J.S.; Schiavo, J.; Panachuki, E.; Souza, C.B.S.; Menezes, R.S.; Ximenes, T.S.; Castilho, S.C.P.; Marra, L.M., 2019. Estoque de carbono e agregação do solo sob fragmentos florestais nos biomas Mata Atlântica e Cerrado. Revista Brasileira de Ciências Ambientais, (53), 97-116. https://doi.org/10.5327/Z2176-947820190518.

Poffenbarger, H.J.; Olk, D.C.; Cambardella, C.; Kersey, J.; Liebman, M.; Mallarino, A.; Six, J.; Castellano, M.J., 2020. Whole-profile soil organic matter content, composition, and stability under cropping systems that differ in belowground inputs. Agriculture, Ecosystems & Environment, v. 291, 106810. https://doi.org/10.1016/j.agee.2019.106810.

Reinert, D.J.; Albuquerque, J.A.; Reichert, J.M.; Aita, C.; Andrada, M.M.C., 2008. Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, v. 32, (5), 1805-1816. https://doi.org/10.1590/S0100-06832008000500002.

Rosset, J.S.; Lana, M.C.; Pereira, M.G.; Schiavo, J.A.; Rampim, L.; Sarto, M.V.M., 2016. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, v. 51, (9), 1529-1538. https://doi.org/10.1590/s0100-204x2016000900052.

Rosset, J.S.; Lana, M.C.; Pereira, M.G.; Schiavo, J.A.; Rampim, L.; Sarto, M.V.M., 2019. Organic matter and soil aggregation in agricultural systems with different adoption times. Semina: Ciências Agrárias, v. 40, (6 Suppl.), 3443-3460. http://dx.doi.org/10.5433/1679-0359.2019v40n6Supl3p3443.

Rosset, J.S.; Lana, M.C.; Pereira, M.G.; Schiavo, J.A.; Rampim, L.; Sarto, M.V.M.; Seidel, E.P., 2014a. Carbon stock, chemical and physical properties of soils under management systems with different deployment times in western region of Paraná, Brazil. Semina: Ciências Agrárias, v. 35, (6), 3053-3072. http://dx.doi.org/10.5433/1679-0359.2014v35n6p3053.

Rosset, J.S.; Schiavo, J.A.; Atanázio, R.A.R., 2014b. Atributos químicos, estoque de carbono orgânico total e das frações humificadas da matéria orgânica do solo em diferentes sistemas de manejo de cana-de-açúcar. Semina: Ciências Agrárias, v. 35, (5), 2351-2366. http://dx.doi.org/10.5433/1679-0359.2014v35n5p2351.

Sá, J.C.M.; Lal, R., 2009. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil & Tillage Research, v. 103, (1), 46-56. https://doi.org/10.1016/j.still.2008.09.003.

Sales, A.; Silva, A.R.; Veloso, C.A.C.; Carvalho, E.J.M.; Miranda, B.M., 2018. Carbono orgânico e atributos físicos do solo sob manejo agropecuário sustentável na Amazônia legal. Colloquium Agrariae, v. 14, (1), 1-15.

Sales, R.P.; Portugal, A.F.; Moreira, J.A.A.; Kondo, M.K.; Pegoraro, R.F., 2016. Qualidade física de um Latossolo sob plantio direto e preparo convencional no semiárido. Revista Ciência Agronômica, v. 47, (3), 429-438.

Salton, J.C.; Mercante, F.M.; Tomazi, M.; Zanatta, J.A.; Concenço, G.; Silva, W.M.; Retore, M., 2014. Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. Agriculture, Ecosystems & Environment, v. 190, 70-79. https://doi.org/10.1016/j.agee.2013.09.023.

Salton, J.C.; Mielniczuk, J.; Bayer, C.; Boeni, M.; Conceição, P.C.; Fabrício, A.C.; Macedo, M.C.M.; Broch, D.L., 2008. Agregação e estabilidade de agregados do solo em sistemas agropecuários em Mato Grosso do Sul. Revista Brasileira de Ciência do Solo, v. 32, (1), 11-21. https://doi.org/10.1590/S0100-06832008000100002.

Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F., 2018. Sistema Brasileiro de Classificação de Solos. 5. ed. Embrapa, Brasília, 356 pp.

Santos, U.J.; Duda, G.P.; Marques, M.C.; Medeiros, E.V.; Lima, J.R.S.; Souza, E.S.; Brossard, M.; Hammecker, C., 2019. Soil organic carbon fractions and humic substances are affected by land uses of Caatinga forest in Brazil. Arid Land Research and Management, v. 33, (3), 255-273. https://doi.org/10.1080/15324982.2018.1555871.

Secretaria de Estado de Meio Ambiente e Desenvolvimento Econômico (SEMADE). 2015. Estudo da Dimensão Territorial do Estado de Mato Grosso do Sul: Regiões de Planejamento. Governo do Estado de Mato Grosso do Sul, Campo Grande, 91 pp.

Shen, X.; Yang, F.; Xiao, C.; Zhou, Y., 2020. Increased contribution of root exudates to soil carbon input during grassland degradation. Soil Biology and Biochemistry, v. 146, 107817. https://doi.org/10.1016/j.soilbio.2020.107817.

Silva, B.O.; Moitinho, M.R.; Santos, G.A.A.; Teixeira, D.D.B.; Fernandes, C.; La Scala Jr., N., 2019. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil & Tillage Research, v. 186, 224-232. https://doi.org/10.1016/j.still.2018.10.019.

Sisti, C.P.J.; Santos, H.P.; Kohhann, R.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M., 2004. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil & Tillage Research, v. 76, (1), 39-58. https://doi.org/10.1016/j.still.2003.08.007.

Six, J.Α.Ε.Τ.; Elliott, E.T.; Paustian, K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, v. 32, (14), 2099-2103. https://doi.org/10.1016/S0038-0717(00)00179-6.

Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC, 681p.

Souza, L.C.; Fernandes, C.; Moitinho, M.R.; Bicalho, E.S.; La Scala Jr., N., 2018. Soil carbon dioxide emission associated with soil porosity after sugarcane field reform. Mitigation and Adaptation Strategies for Global Change, v. 24, 113-127. https://doi.org/10.1007/s11027-018-9800-5.

Tisdall, J.M.; Oades, J.M., 1982. Organic matter and water‐stable aggregates in soils. Journal of Soil Science, v. 33, (2), 141-163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x.

Udom, B.E.; Omovbude, S., 2019. Soil physical properties and carbon/nitrogen relationships in stable aggregates under legume and grass fallow. Acta Ecologica Sinica, v. 39, (1), 56-62. https://doi.org/10.1016/j.chnaes.2018.05.008.

Vasques, I.C.; Souza, A.A.; Morais, E.G.; Benevenute, P.A.; Silva, L.D.C.; Homem, B.G.; Casagrande, D.R.; Silva, B.M., 2019. Improved management increases carrying capacity of Brazilian pastures. Agriculture, Ecosystems & Environment, v. 282, 30-39. https://doi.org/10.1016/j.agee.2019.05.017.

Velasquez, E.; Lavelle, P., 2019. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecologica, v. 100, 103446. https://doi.org/10.1016/j.actao.2019.103446.

Yeomans, J.C.; Bremner, J.M., 1988. A rapid and precise method for routine determination of organic carbon in soil. Soil Science, v. 19, (13), 1467-1476. https://doi.org/10.1080/00103628809368027.

Downloads

Published

2021-06-23

How to Cite

Morais, D. H. de O., Silva, C. A. da, Rosset, J. S., Farias, P. G. da S., Souza, C. B. da S., Barros Ozório, J. M., Castilho, S. C. de P., & Marra, L. M. (2021). Stock and indices of carbon management under different soil use systems. Revista Brasileira De Ciências Ambientais, 56(2), 286–295. https://doi.org/10.5327/Z21769478867

More articles by the same author(s)