Metals bioremediation potential using Pseudokirchneriella subcapitata
DOI:
https://doi.org/10.5327/Z21769478834Keywords:
Adsorption; biosorption; Chlorophyceae; contaminants.Abstract
Microalgae are unicellular organisms, photosynthesizers that present cell duplication exponentially and biosorption capacity of nutrients dissolved in water. The objective of this work was to evaluate the capacityof the microalga Pseudokirchneriella subcapitata for bioremediation of metals and salts. In this aspect, the reduction of the metals and salts in the synthetic effluents by the microalga P. subcapitata was evaluated: (T1) culture medium (control); (T2) culture medium contaminated with aluminum chloride; (T3) culture medium contaminated with ferrous sulfate; (T4) culture medium contaminated with zinc sulfate; (T5) culture medium contaminated with the combination of aluminum chloride, ferrous sulfate and zinc sulfate. The bioremediation process was evaluated by comparing culture media with suspended microalgae to a filtrate version of the same medium. Iron and zinc metals, as well as nitrogen and phosphorus salts, showed depleted values in the filtered medium, indicating efficiency in the treatment of water by microalgae. Aluminum content was below the limit of detection in all treatments. The cumulative values in the microalgae biomass were, in descending order: nitrogen, zinc, iron and phosphorus, thus indicating the assimilation of the contaminants in the algal biomass. In addition, high biomass production of the microalgae was observed. The highest production rate was verified in the synthetic effluent with the association of metals, indicating a synergy between contaminants, which was probably responsible for reducing the toxic effect on the microalgae. These results indicated high potential for bioremediation by microalga P. subcapitata, besides the possibility of using algal biomass for biotechnological applications.
Downloads
References
Abdelaziz, A.E.M.; Leite, G.B.; Belhaj, M.A.; Hallenbeck, P.C., 2014. Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresource Technology, v. 157, 140-148. https://doi.org/10.1016/j.biortech.2014.01.114.
Ammar, S.H.; Khadim, H.J.; Mohamed, A.I., 2018. Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environmental Technology Innovation, v. 10, 132-142. https://doi.org/10.1016/j.eti.2018.02.002.
Ansilago, M.; Ottonelli, F.; Carvalho, E.M., 2016. Cultivo da microalga Pseudokirchneriella subcapitata em escala de bancada utilizando meio contaminado com metais pesados. Engenharia Sanitária e Ambiental, v. 21, (3), 603-608. http://dx.doi.org/10.1590/S1413-41522016124295.
Brasil. 2005. Conselho Nacional do Meio Ambiente. Resolução n° 375, de 17 de março de 2005. Brasília, Diário Oficial da União, Seção 1, p. 58-63.
Carvalho, E.M.; Ottonelli, F.; Ansilago, M.; Godoy, H.C.; Nakagaki, J.M.; Ramires, I., 2012. Growth kinetics of the microalga Pseudokirchneriella subcapitata (Korshikov) Hindak (Chlorophyceae) in natural water enriched with NPK fertilizer. Biochemical and. Biotechnology Reports, v. 1, (2), 14-18. http://dx.doi.org/10.5433/2316-5200.2012v1n2p14.
Chu, S.P., 1942. The influence of mineral composition of the medium of the growth of the planktonic algae. Journal of Ecology, v. 30, 284-325.
Cossich, E.S., 2000. Biossorção de cromo (III) pela biomassa de alga marinha Sargassum sp. 139 f. Thesis, Doctoring in Chemical Engineering, Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas.
Escapa, C.; Coimbra, R.N.; Paniagua, S.; García A.I.; Otero M., 2017. Paracetamol and salicylic acid removal from contaminated water by microalgae. Journal of Environmental Management, v. 203, part 2, 799-806. https://doi.org/10.1016/j.jenvman.2016.06.051.
Gao, C.; Champhelaere, K.A.C., Smolders, E., 2016. Zinc toxicity to the alga Pseudokirchneriella subcapitata decreases under phosphate limiting growth conditions. Aquatic Toxicology, v. 173, 74-82. https://doi.org/10.1016/j.aquatox.2016.01.010.
Gardner, R.; Peters, P.; Peyton, B.; Cooksey, K.E., 2011. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. Journal of Applied Phycology, v. 23, (6), 1005-1016. https://doi.org/10.1007/s10811-010-9633-4.
Gonçalves, A.L.; Rodrigues, C.M.; Pires, J.C.M.; Simões, M., 2016. The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal Research, v. 14, 127-136. https://doi.org/10.1016/j.algal.2016.01.008.
González, R.; Garcia-Balboa, C.; Rouco, M.; Lopez-Rodas, V.; Costas, E., 2012. Adaptation of microalgae to lindane: A new approach for bioremediation. Aquatic Toxicology, v. 109, 25-32. https://doi.org/10.1016/j.aquatox.2011.11.015.
Gouveia, L.; Graça, S.; Sousa, C.; Ambrosano, L.; Ribeiro, B.; Botrel, E.P.; Castro Neto, P.; Ferreira, A.F.; Silva, C.M., 2016. Microalgae biomass production using wastewater: Treatment and costs: Scale-up considerations. Algal Research, v. 16, 167-176. https://doi.org/10.1016/j.algal.2016.03.010.
Granados, Y.P.; Ronco, A.; Báez, M.C.D., 2008. Ensayo de toxicidad crónica con el alga Selenastrum capricornutum (Pseudokirchneriella subcapitata) por el método de enumeración celular basado en el uso de hemocitómetro Neubauer. In: Romero, P.R.; Cantú, A.M. Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo: La experiencia en México. Instituto Nacional de Ecología, Secretaría de Medio Ambiente y Recursos Naturales, Mexico, pp. 69-87.
Leong, W.H.; Lim, J.W.; Lam, M.K.; Uemura, Y.; Ho, C.D.; Ho, Y.C., 2018. Co-cultivation of activated sludge and microalgae for the simultaneous enhancements of nitrogen-rich wastewater bioremediation and lipid production. Journal of the Taiwan Institute of Chemical Engineers, v. 87, 216-224. https://doi.org/10.1016/j.jtice.2018.03.038.
Lima, P.C.G., 2010. Estudos dos mecanismos de detoxificação e tolerância aos metais cromo e cobre em Pseudokirchneriella subcapitata e Pistia stratiotes e o uso das macrófitas Tpha sp e Phragmites sp na remoção de nutrientes em wetlands construídos. Thesis, Doctoring in Sciences of Environmental Engineering, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos.
Mahapatra, D.M.; Chanakya, H.N.; Ramachandra, T.V., 2014. Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresource Technology, v. 168, 142-150. https://doi.org/10.1016/j.biortech.2014.03.130.
Mantovani, J.R.; Cruz, M.C.P.; Ferreira, M.E.; Barbosa, J.C., 2005. Comparação de procedimentos de quantificação de nitrato. Pesquisa Agropecuária Brasileira, v. 40, (1), 53-59. http://dx.doi.org/10.1590/S0100-204X2005000100008.
Mohammadi, M.; Mowla, D.; Esmaeilzadeh, F.; Ghasemi, Y., 2018. Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: A batch study. Journal of Environmental Chemical Engineering v. 6, (2), 2812-2820. https://doi.org/10.1016/j.jece.2018.04.037.
Mota, F.S.B.; Von Sperling, M. (Eds.)., 2009. Nutrientes de Esgoto Sanitário: utilização e remoção. ABES, Rio de Janeiro, 428 pp.
Mozeto, A.A.; Zagatto, P.A., 2008. Introdução de Agentes Químicos no Ambiente. In: Zagatto, P.A.; Bertoletti, E. (Eds.). Ecotoxicologia Aquática: Princípios e Aplicações. Rima, São Paulo, pp. 15-38.
Pavan, M.A.; Bloch, M.F.; Zempulski, H.C.; Miyazawa, M.; Zocoler, D.C., 1992. Manual de análises químicas de solo e controle de qualidade. 2. ed. IAPAR, Londrina, v. 40.
Peng, Y.; Deng, A.; Gong, X.; Li, X.; Zhang, Y., 2017. Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae. Bioresource Technology, v. 243, 628-633. https://doi.org/10.1016/j.biortech.2017.06.165.
Priyadarshani, I.; Rath, B., 2012. Commercial and industrial applications of microalgae – A review. Journal of Algal Biomass Utilization, v. 3, (4), 89-100.
Ramachandra, T.V.; Madhab, M.D.; Shilpi, S.; Joshi, N.V., 2013. Algal biofuel from urban wastewater in India: Scope and challenges. Renewable & Sustainable Energy Reviews, v. 21, 767-777. https://doi.org/10.1016/j.rser.2012.12.029.
Redfield, A.C., 1958. The biological control of chemical factors in the environment. American Scientist, v. 46, (3), 205-221.
Ridley, C.J.A.; Parker, B.M.; Norman, L.; Schlarb-Ridley, B.; Dennis, R.; Jamieson, A.E.; Clark, D.; Skill, S.C.; Smith, A.G.; Davey, M.P., 2018. Growth of microalgae using nitrate-rich brine wash from the water industry. Algal Research, v. 33, 91-98. https://doi.org/10.1016/j.algal.2018.04.018.
Saavedra, R.; Muñoz, R.; Taboada, M.E.; Vega, M.; Bolado, S., 2018. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresource Technology, v. 263, 49-57. http://doi.org/10.1016/j.biortech.2018.04.101.
Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Allah, E.F.A., 2019. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, v. 26, (4), 709-722. https://doi.org/10.1016/j.sjbs.2017.11.003.
Schmitz, R.; Magro, C.E.; Colla, L.M., 2012. Aplicações ambientais de microalgas. Revista CIATEC-UPF, v. 4, (1), 48-60. https://doi.org/10.5335/ciatec.v4i1.2393.
Shen, Y.; Zhu, W.; Li, H.; Ho, S.F.; Chen, J.; Xie, Y.; Shi, X., 2018. Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp. Bioresource Technology, v. 257, 157-163. https://doi.org/10.1016/j.biortech.2018.02.060.
Silva, K.M.D.; Rezende, L.C.S.H.; Silva, C.A.; Bergamasco, R.; Gonçalves, D.S., 2013. Caracterização físico-química da fibra de coco verde para a adsorção de metais pesados em efluente de indústria de tinta. Engevista, v. 15, (1). https://doi.org/10.22409/engevista.v15i1.387
Sipaúba-Tavares, L.H.; Ibarra, L.C.C.; Fioresi, T.B., 2009. Cultivo de Ankistrodesmus gracilis (reisch) korsikov (Chlorophyta) em laboratório utilizando meio chu12 e de macrófita com npk. Boletim do Instituto de Pesca, v. 35, (1), 111-118.
Sipaúba-Tavares, L.H.; Rocha, O., 1993. Cultivo em larga escala de organismos planctônicos para alimentação de larvas e alevinos de peixes: I - algas clorofíceas. Biotemas, v. 6, (1), 93-106. https://doi.org/10.5007/%25x
Soares, C.R.F.S.; Accioly, A.M.A.; Marques, T.C.L.L.S.M.; Siqueira, J.O.; Moreira, F.M.S., 2001. Acúmulo e distribuição de metais pesados nas raízes, caule e folhas de mudas de árvores em solo contaminado por rejeitos de indústria de zinco. Revista Brasileira de Fisiologia Vegetal, v. 13, (3), 302-315. http://dx.doi.org/10.1590/S0103-31312001000300006.
Sousa, C.A.; Soares, H.M.V.M.; Soares, E.V., 2018. Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater algae Pseudokirchneriella subcapitata. Aquatic Toxicology, v. 204, 80-90. https://doi.org/10.1016/j.aquatox.2018.08.022.
Sperling, E.V., 2001. Uso de relações limnológicas para avaliação da qualidade da água em mananciais de abastecimento. In: Associação Brasileira de Engenharia Sanitária e Ambiental; AIDIS. Saneamento ambiental: desafio para o século Rio de Janeiro. Anais... Ed. ABES, Rio de Janeiro, v.4, pp. 1-3.
Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweiss, S.J., 1995. Análises de solo, plantas e outros materiais. Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Porto Alegre (Boletim Técnico de Solos, 5).
Wang, M.; Kuo-Dahab, W.C.; Dolan, S.; Park, C., 2014. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresource Technology, v. 154, 131-137. https://doi.org/10.1016/j.biortech.2013.12.047.
Welz, B.; Sperling, M., 1999. Atomic absorption spectrometry. 3rd ed. VCH, Weinheim.
Zhang, X.; Zhao, X.; Wan, C.; Chen, B.; Bai, F., 2016. Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Research, v. 16, 427-433. https://doi.org/10.1016/j.algal.2016.04.002.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.