Fine root contribution to the soil carbon stock of an agroforestry system in a Caatinga-Atlantic Forest transition zone
DOI:
https://doi.org/10.5327/Z21769478736Keywords:
Grevillea robusta; Coffea arabica; root density; root diameter; organic matter.Abstract
The objective of this work was to evaluate the distribution of fine roots and its influence on the soil organic carbon stock, at a depth of 20 cm, in a Grevillea robusta and Coffea arabica agroforestry system. The study was conducted in an agroforestry system established 15 years ago in a transition area of Caatinga and Atlantic Forest biomes in Brazil. G. robusta trees representing the most frequent diameter class were selected, and three distances of these trees (0, 0.75 and 1.50 m) and two soil collection depths (0–10 and 10–20 cm) were defined. The root samples were scanned and quantified using a software program. There was a general predominance of roots with a diameter of 0.6 mm at the shortest distance from the surface layer, while there was a predominance of roots with a diameter of 0.4 mm in the 10–20 cm layer. The root carbon stock at a distance of 0.75 m was higher at a depth of 0–10 cm (0.60 Mg ha-1). The soil organic carbon stock also showed higher results in the 0–10 cm layer compared to the 10–20 cm layer, although with significant variation only in the distance of 1.5 m. There was a higher concentration of fine roots in the topsoil, probably influenced by a greater availability of water and nutrients from plant residues. The soil carbon stock is not closely related to root density or root carbon stock. The data presented in this study do not provide a definitive conclusion.
Downloads
References
ADDO-DANSO, S. D.; DEFRENNE, C. E.; MCCORMACK, M. L.; OSTONEN, I.; ADDO-DANSO, A.; FOLI, E. G.; BORDEN, K. A.; ISAAC, E.; PRESCOTT, C. E. Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecology, v. 221, n. 1, p. 1-13, 2020. https://doi.org/10.1007/s11258-019-00986-1
AGEVI, H.; ONWONGA, R.; KUYAH, S.; TSINGALIA, M. Carbon stocks and stock changes in agroforestry practices: A review. Tropical and Subtropical Agroecosystem, v. 20, n. 1, p. 101-109, 2017. Available at: <http://www.redalyc.org/articulo.oa?id=93950595004>. Accessed on: Aug. 5, 2020.
ALBUQUERQUE, E. R.; SAMPAIO, E. V.; PAREYN, F. G.; ARAÚJO, E. L. Root biomass under stem bases and at different distances from trees. Journal of Arid Environments, v. 116, p. 82-88, 2015. https://doi.org/10.1016/j.jaridenv.2015.02.003
BALJIT, S.; PARAMPARDEEP, S.; GILL, R. I. S. Seasonal variation in biomass and nitrogen content of fine roots of bead tree (Melia azedarach) under different nutrient levels in an agroforestry system. Range Management and Agroforestry, v. 37, n. 2, p. 192-200, 2016.
BORDEN, K. A.; THOMAS, S. C.; ISAAC, M. E. Interspecific variation of tree root architecture in a temperate agroforestry system characterized using ground-penetrating radar. Plant and Soil, v. 410, n. 1-2, p. 323-334, 2017. https://doi.org/10.1007/s11104-016-3015-x
CHATTERJEE, N.; NAIR, P. K. R.; CHAKRABORTY, S.; NAIR, V. D. Agriculture, ecosystems and environment changes in soil carbon stocks across the forest-agroforest-agriculture/pasture continuum in various agroecological regions: a meta-analysis. Agriculture Ecosystems Environment, v. 266, p. 55-67, 2018. https://doi.org/10.1016/j.agee.2018.07.014
CHATTERJEE, N.; NAIR, P. K.; NAIR, V. D.; BHATTACHARJEE, A.; VIRGINIO FILHO, E. M.; MUSCHLER, R. G.; NOPONEN, M. R. Do Coffee Agroforestry Systems Always Improve Soil Carbon Stocks Deeper in the Soil? - A Case Study from Turrialba, Costa Rica. Forests, v. 11, n. 1, p. 49-72, 2020. https://doi.org/10.3390/f11010049
CLIMATE-DATA. Dados climáticos para cidades mundiais – Planalto, Bahia, Brazil, 1982 - 2012. Available at: <https://pt.climate-data.org/location/43306/>. Accessed on: July 12, 2018.
COSTA, M. C. G.; CUNHA, I. M. L.; JORGE, L. A. C.; ARAÚJO, I. C. S. Public-domain software for root image analysis. Revista Brasileira de Ciências do Solo, v. 38, n. 5, p. 1359-1366, 2014. https://doi.org/10.1590/S0100-06832014000500001
DEFRENET, E.; ROUPSARD, O.; VAN DEN MEERSCHE, K.; CHARBONNIER, F.; PASTOR PÉREZ-MOLINA, J.; KHAC, E.; PRIETO, I.; STOKES, A.; ROUMET, C.; RAPIDEL, B.; VIRGINIO FILHO, E. M.; VARGAS, V. J.; ROBELO, D.; BARQUERO, A.; JOURDAN, C. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age. Annals of Botany, v. 118, n. 4, p. 833-851, 2016. https://doi.org/10.1093/aob/mcw153
DUAN, Z. P.; GAN, Y. W.; WANG, B. J.; HAO, X. D.; XU, W. L.; ZHANG, W.; LI, L. H. Interspecific interaction alters root morphology in young walnut/wheat agroforestry systems in northwest China. Agroforestry Systems, v. 93, p. 419-439, 2019. https://doi.org/10.1007/s10457-017-0133-2
EMPRESA BRASILEIRA DE PESQUISAS AGROPECUÁRIA (EMBRAPA). Manual de método de análise de solo. 3. ed. Brasília: EMBRAPA, 2017. 573 p.
EMPRESA BRASILEIRA DE PESQUISAS AGROPECUÁRIA (EMBRAPA). Sistema brasileiro de classificação de solos. 3. ed. Brasília: EMBRAPA, 2013. 353 p.
FALCÃO, K.; MONTEIRO, F.; OZÓRIO, J.; SOUZA, C.; FARIAS, P.; MENEZES, R.; PANACHUKI, E.; ROSSET, J. Estoque de carbono e agregação do solo sob diferentes sistemas de uso no Cerrado. Revista Brasileira de Ciências Ambientais, v. 55, n. 2, p. 242-255, 2020. https://doi.org/10.5327/Z2176-947820200695
FREITAS, T. A. S.; BARROSO, D. G.; CARNEIRO, J. G. A. Dinâmica de raízes de espécies arbóreas: visão da literatura. Ciência Florestal, v. 18, n. 1, p. 133-142, 2008. https://doi.org/10.5902/19805098518
HERTEL, D.; HARTEVELD, M. A.; LEUSCHNER, C. Conversion of a tropical forest into agroforest alters the fine root-related carbon flux to the soil. Soil Biology and Biochemistry, v. 41, n. 3, p. 481-490, 2009. https://doi.org/10.1016/j.soilbio.2008.11.020
ISAAC, M. E.; BORDEN, K. A. Nutrient acquisition strategies in agroforestry systems. Plant and Soil, v. 444, p. 1-19, 2019. https://doi.org/10.1007/s11104-019-04232-5
JORGE, L. A. de C.; RODRIGUES, A. F de O. Safira: sistema de análise de fibras e raízes. Boletim de Pesquisa e Desenvolvimento. São Carlos: Embrapa Instrumentação Agropecuária, 2008. 20 p.
KUMAR, S.; UDAWATTA, R. P.; ANDERSON, S. H. Root length density and carbon content of agroforestry and grass buffers under grazed pasture systems in a Hapludalf. Agroforestry Systems, v. 80, n. 1, p. 85-96, 2010. https://doi.org/10.1007/s10457-010-9312-0
LE BISSONNAIS, Y.; PRIETO, I.; ROUMET, C.; NESPOULOUS, J.; METAYER, J.; HUON, S.; VILLATORO SANCHEZ, M.; STOKES, A. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics. Plant and Soil, v. 424, p. 303-317, 2018. https://doi.org/10.1007/s11104-017-3423-6
LIAO, Y.; MCCORMACK, M.L.; HOUBAO, F.; WANG, H.; WU, J.; TU, J.; LIU, W.; GUO, D. Relation Of Fine Root Distribution To Soil C In A Cunninghamia Lanceolata Plantation In Subtropical China. Plant and Soil, v. 381, p. 225-234, 2014. https://doi.org/10.1007/s11104-014-2114-9
LIVSLEY, S. J.; GREGORY, P. J.; BURESH, R. J. Competition in tree row agroforestry systems. Distribution and dynamics of fine root length and biomass. Plant and Soil, v. 227, p. 149-161, 2000. https://doi.org/10.1023/A:1026551616754
MEIRELES, I.; MATSUMOTO, S.; REIS, C.; PEREIRA, L.; OLIVEIRA, U.; BARRETO-GARCIA, P.; PRADO, T.; RAMOS, P. Estimativa da biomassa de cafeeiros em sistemas agroflorestais sob manejo orgânico e convencional em diferentes arranjos. Revista Brasileira de Ciências Ambientais (Online), n. 53, p. 134-147, 2019. https://doi.org/10.5327/Z2176-947820190488
MORA-GARCÉS, A. A. Vertical distribution and spatial pattern of fine root density in coffee – based agroforestry systems under organic and conventional inputs. Tropical and Subtropical Agroecosystems, v. 21, n. 2, p. 199-212, 2018. Available at: <http://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/2313/1140>. Accessed on: Aug. 5, 2020.
MORAIS, V. A.; SANTOS, C. A.; MELLO, J. M.; DADID, H. C.; ARAÚJO, E. J. G.; SCOLFORO, J. R. S. Spatial and vertical distribution of litter and belowground carbon in a brazilian cerrado vegetation. Cerne, v. 23, n. 1, p. 43-52, 2017. https://doi.org/10.1590/01047760201723012247
NAIR, P. K. R.; NAIR, V. D. Solid–fluid–gas: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Current Opinion in Environmental Sustainability, v. 6, p. 22-27, 2014. https://doi.org/10.1016/j.cosust.2013.07.014
OZÓRIO, B. J.; ROSSET, J.; SCHIAVO, J.; PANACHUKI, E.; SOUZA, C.; MENEZES, R.; XIMENES, T.; CASTILHO, S.; MARRA, L. M. Estoque de carbono e agregação do solo sob fragmentos florestais nos biomas Mata Atlântica e Cerrado. Revista Brasileira de Ciências Ambientais (Online), n. 53, p. 97-116, 2019. https://doi.org/10.5327/Z2176-947820190518
PADOVAN, M. P.; CORTEZ, V. J.; NAVARRETE, L. F.; NAVARRETE, E. D.; DEFFNER, A. C.; CENTENO, L. G.; MUNGUÍA, R.; BARRIOS, M.; VILCHEZ-MENDOZA, J.S.; VEGA-JARQUÍN, C.; COSTA, A. N.; BROOK, R. M.; RAPIDEL, B. Root distribution and water use in coffee shaded with Tabebuia rosea Bertol. and Simarouba glauca DC. compared to full sun coffee in sub-optimal environmental conditions. Agroforestry Systems, v. 89, n. 5, p. 857-868, 2015. https://doi.org/10.1007/s10457-015-9820-z
POLLIERER, M. M.; DYCKMANS, J.; SCHEU, S.; HAUBERT, D. Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Functional Ecology, v. 26, n. 4, p. 978-990, 2012. https://doi.org/10.1111/j.1365-2435.2012.02005.x
PULROLNIK, K.; BARROS, N. F.; SILVA, I. R.; NOVAIS, R. F.; BRANDANI, C. B. Estoques de carbono e nitrogênio em frações lábeis e estáveis da matéria orgânica de solos sob eucalipto, pastagem e Cerrado no vale do Jequitinhonha - MG. Revista Brasileira de Ciências do Solo, v. 33, n. 5, p. 1125-1136, 2009. https://doi.org/10.1590/S0100-06832009000500006
RODRIGUES, E. R.; CULLEN JUNIOR, L.; BELTRAME, T. P.; MOSCOGLIATO, A. V.; SILVA, I. C. Avaliação econômica de sistemas agroflorestais implantados para recuperação de reserva legal no Pontal do Paranapanema, São Paulo. Revista Árvore, v. 31, n. 5, p. 941-948, 2007. https://doi.org/10.1590/s0100-67622007000500018
SMITH, D. M.; JACKSON, N. A.; ROBERTS, J. M.; ONG, C. K. Root distributions in a Grevillea robusta-maize agroforestry system in semi-arid Kenya. Plant and Soil, v. 211, n. 2, p. 191-205, 1999. https://doi.org/10.1023/A:1004635414462
STOUT, B.; LAL, R.; MONGER, C. Carbon capture and sequestration: The roles of agriculture and soils. International Journal of Agricultural and Biological Engineering, v. 9, n. 1, p. 1-8, 2016. https://doi.org/10.3965/j.ijabe.20160901.2280
THAKUR, S.; KUMAR, B. M.; KUNHAMU, T. K. Coarse root biomass, carbon, and nutrient stock dynamics of different stem and crown classes of silver oak (Grevillea robusta A. Cunn. ex. R. Br.) plantation in Central Kerala, India. Agroforestry Systems, v. 89, n. 5, p. 869-883, 2015. https://doi.org/10.1007/s10457-015-9821-y
THEVATHASAN, N. V.; GORDON, A. M. Ecology of tree intercropping systems in the North temperate region: experiences from southern Ontario, Canada. Agroforestry Systems, v. 61, p. 257-268, 2004. https://doi.org/10.1023/b:agfo.0000029003.00933.6d
UPSON, M. A.; BURGESS, P. J. Soil organic carbon and root distribution in a temperate arable agroforestry system. Plant Soil, v. 373, p. 43-58, 2013. https://doi.org/10.1007/s11104-013-1733-x
VICENTE, L. C.; GAMA-RODRIGUES, E. F.; GAMA-RODRIGUES, A. C. Soil carbon stocks of Ultisols under different land use in the Atlantic rainforest zone of Brazil. Geoderma Regional, v. 7, n. 3, p. 330-337, 2016. https://doi.org/10.1016/j.geodrs.2016.06.003
WITSCHORECK, R.; SCHUMACHER, M. V.; CALDEIRA, M. V. W. Estimating of biomass and length of fine roots in Eucalyptus urophylla S.T. Blake in the county of Santa Maria, RS. Revista Árvore, v. 27, n. 2, p. 177-183, 2003. https://doi.org/10.1590/S0100-67622003000200008
ZONTA, E.; BRASIL, F. C.; GOI, S. R.; ROSA, M. M. T. O sistema radicular e suas interações com o ambiente edáfico. In: FERNANDES, M. S. (ed.). Nutrição mineral de plantas. Viçosa: Sociedade Brasileira de Ciência do Solo, 2006. p. 7-52.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.