GROUNDWATER VULNERABILITY TO AGROCHEMICAL CONTAMINATION

Authors

DOI:

https://doi.org/10.5327/Z2176-947820200531

Keywords:

semi-arid; fuzzy logic; aquifer.

Abstract

This research aimed at evaluating groundwater vulnerability to agrochemical contamination. To that end, we developed an index called Hydric Vulnerability and Agrochemical Contamination Index (HVACI), which integrates a geographic information system and fuzzy logic to measure catchment vulnerability to agrochemical contamination. Our case study investigates two sub-basins, the Baixo Jaguaribe and the Médio Jaguaribe, in the state of Ceará, Brazil. We built a logical relationship matrix involving economic and environmental information as a tool to enhance public managers’ decision-making capabilities. Evaluation was based on four categories of vulnerability — high, medium-high, medium-low, and low —, and we found that the joint area of the Baixo Jaguaribe and Médio Jaguaribe sub-basins presented the following levels of risk contamination: 80.3% of the area had low vulnerability, 3.5% had medium-low vulnerability, 3.0% had medium-high vulnerability, and 13.2% had high vulnerability. Geographically, the municipalities with high vulnerability to contamination by pesticides were Aracati, Icapuí, Limoeiro do Norte, Tabuleiro do Norte, and Quixeré. Therefore, HVACI is an important tool for directing environmental management efforts toward areas identified as highly vulnerable to agrochemical contamination.

Downloads

Download data is not yet available.

References

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Manual de Usos Consuntivos da Água no Brasil. Brasília: ANA, 2019. Available at: <http://snirh.gov.br/usos-da-agua/>. Accessed on: Jun. 15, 2019.

ALLER, L.; BENNETT, T.; LEHR, J. H.; PETTY, R. J.; HACKETT, G. DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency, 1987. Available at: <https://nepis.epa.gov/>. Accessed on: Apr. 4, 2020.

ANDRADE, A. S.; REIS, M. R.; DRUMOND, L. C. D.; CAIXETA, S. P.; RONCHI, C. P. Potencial de lixiviação de herbicidas em solos agrícolas na região do Alto Paranaíba (MG). Pesticidas, v. 21, p. 95-102, 2011. Available at: <https://doi.org/10.5380/pes.v21i0.25848>. Accessed on: Feb. 10, 2020.

BACK, Á.; DESCHAMPS, F.; SANTOS, M. da G. Ocorrência de agrotóxicos em águas usadas com irrigação de arroz no Sul de Santa Catarina. Revista Brasileira de Ciências Ambientais (Online), n. 39, p. 47-58, 2016. Available at: <https://doi.org/10.5327/Z2176-9478201611014>. Accessed on: July 1, 2020.

BARRETO-NETO, A. A.; MARCHESI, A. F. Avaliação da vulnerabilidade socioambiental à desertificação no estado do Espírito Santo. Brasil. Revista Brasileira de Ciências Ambientais (Online), n. 51, p. 28-40, 2019. Available at: <https://doi.org/10.5327/Z2176-947820190413>. Accessed on: Sept. 4, 2019.

BARRILE, V.; CIRIANNI, F.; LEONARDI, G.; PALAMARA, R. A Fuzzy-based Methodology for Landslide Susceptibility Mapping. Procedia, v. 223, p. 896-902, 2016. Available at: <https://doi.org/10.1016/j.sbspro.2016.05.309>. Accessed on: Feb. 12, 2020.

BARZEGAR, R.; MOGHADDAM, A. A.; ADAMOWSKI, J.; NAZEMI, A. H. Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Environmental Science and Pollution Research, v. 26, n. 8, p. 8325-8339, 2019. Available at: <https://doi.org/10.1007/s11356-019-04252-9>. Accessed on: Aug. 30, 2019.

CALDERON, M. J.; LUNA, E. de; GOMEZ, J. A.; HERMOSIN, M. C. Herbicide monitoring in soil. runoff waters and sediments in the olive orchard. Science of The Total Environment, v. 569-570, p. 416-422, 2016. Available at: <http://dx.doi.org/10.1016/j.scitotenv.2016.06.126>. Accessed on: June 12, 2019.

COSTA, C. W.; LORANDI, R.; LOLLO, J. A. de; SANTOS, V. S. dos. Potential for aquifer contamination of anthropogenic activity in the recharge area of the Guarani Aquifer System. southeast of Brazil. Groundwater for Sustainable Development, v. 8, p. 10-23, 2019. Available at: <https://doi.org/10.1016/j.gsd.2018.08.007>. Accessed on: June 12, 2019.

DAS, B.; CHANDRA PAL, S. Irrigation practices causing vulnerability of groundwater resources in water scarce Goghat-I and II Blocks of Hugli District using MCDA. AHP. Fuzzy logic and novel ensemble models. Advances in Space Research, v. 65, n. 12, p. 2733-2748, 2020. Available at: <https://doi.org/10.1016/j.asr.2020.03.027>. Accessed on: Apr. 2, 2020.

DELLA-FLORA, A.; BECKER, R. W.; BENASSI, S. F.; TOCI, A. T.; CORDEIRO, G. A.; IBÁÑEZ, M.; PORTOLÉS, T.; HERNÁNDEZ, F.; BOROSKI, M.; SIRTORI, C. Comprehensive investigation of pesticides in Brazilian surface water by high resolution mass spectrometry screening and gas chromatography–mass spectrometry quantitative analysis. Science of The Total Environment, v. 669, p. 248-257, 2019. Available at: <https://doi.org/10.1016/j.scitotenv.2019.02.354>. Accessed on: May 19, 2019.

DEMIR, A. E. A.; DILEK, F. B.; YETIS, U. A new screening index for pesticides leachability to groundwater. Journal of Environmental Management, v. 231, p. 1193-1202, 2019. Available at: <https://doi.org/10.1016/j.jenvman.2018.11.007>. Accessed on: Aug. 30, 2019.

DIXON, B. Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Applied Geography, v. 25, n. 4, p. 327-347, 2005. Available at: <https://doi.org/10.1016/j.apgeog.2005.07.002>. Accessed on: Feb. 12, 2020.

EJIOGU, B. C.; OPARA, A. I.; NWOSU, E. I.; NWOFOR, O. K.; ONYEMA, J. C.; CHINAKA, J. C. Estimates of aquifer geo-hydraulic and vulnerability characteristics of Imo State and environs. Southeastern Nigeria. using electrical conductivity data. Environmental Monitoring and Assessment, v. 191, p. 238, 2019. Available at: <https://doi.org/10.1007/s10661-019-7335-1>. Accessed on: Aug. 30, 2019.

FEIZIZADEH, B.; ROODPOSHTI, M. S.; JANKOWSKI, P.; BLASCHKE, T. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers & Geosciences, v. 73, p. 208-221, 2014. Available at: <http://dx.doi.org/10.1016/j.cageo.2014.08.001>. Accessed on: Feb. 19, 2019.

FERREIRA, M. J. M.; VIANA JÚNIOR, M. M.; PONTES, A. G. V.; RIGOTTO, R. M.; GADELHA, D. Gestão e uso dos recursos hídricos e a expansão do agronegócio: água para quê e para quem? Ciência & Saúde Coletiva, v. 21, n. 3, p. 743-752, 2016. Available at: <https://doi.org/10.1590/1413-81232015213.21012015>. Accessed on: Apr. 12, 2020.

FIDELIBUS, M. D.; PULIDO-BOSCH, A. Groundwater Temperature as an Indicator of the Vulnerability of Karst Coastal Aquifers. Geosciences, v. 9, n. 1, p. 23-45, 2019. Available at: <https://doi.org/10.3390/geosciences9010023>. Accessed on: Aug. 30, 2019.

FRANÇA, L. C. de J.; SILVA, J. B. L.; LISBOA, G. S.; LIMA, T. P.; FERRAZ, F. T. Elaboração de Carta de Risco de Contaminação por Agrotóxicos para a Bacia do Riacho da Estiva, Brasil. Floresta e Ambiente, v. 23, n. 4, p. 463-474, 2016. Available at: <https://doi.org/10.1590/2179-8087.141415>. Accessed on: Feb. 12, 2020.

FRANCO, G. B.; SILVA, D. D.; MARQUES, E. A. G.; CHAGAS, C. S.; GOMES, R. L. Análise da Vulnerabilidade à Contaminação do Aquífero Freático e da Taxa de Infiltração do Solo da Bacia do Rio Almada e Área Costeira Adjacente – BA. Revista Brasileira de Geografia Física, v. 8, n. 3, p. 705-720, dez. 2015. Available at: <https://periodicos.ufpe.br/revistas/rbgfe/article/view/233387>. Accessed on: Feb. 12, 2020. https://doi.org/10.26848/rbgf.v8.3.p705-720

FREITAS, B. M. C. Marcas da modernização da agricultura no território do Perímetro Irrigado Jaguaribe-Apodi: uma face da atual reestruturação socioespacial do Ceará. 176f. Dissertation (Mestrado em Geografia) – Centro de Ciências e Tecnologia, Universidade Estadual do Ceará, Fortaleza, 2010.

FUNDAÇÃO CEARENSE DE METEOROLOGIA E RECURSOS HÍDRICOS (FUNCEME). Levantamento de reconhecimento de média intensidade dos solos - Mesorregião do Sul Cearense. Fortaleza: Fundação Cearense de Meteorologia e Recursos Hídricos, 2012. 280 p.

FUNDAÇÃO CEARENSE DE METEOROLOGIA E RECURSOS HÍDRICOS (FUNCEME). Sistema de Informação. FUNCEME. Available at: <http://www.funceme.br>. Accessed on: May 15, 2019.

GIMSING, A. L.; AGERT, J.; BARAN, N.; BOIVIN, A.; FERRARI, F.; GIBSON, R.; HAMMOND, L.; HEGLER, F.; JONES, R. L.; KÖNIG, W.; KREUGER, J.; VAN DER LINDEN, T.; LISS, D.; LOISEAU, L.; MASSEY, A.; MILES, B.; MONZORIES, L.; NEWCOMBE, A.; POOT, A.; REEVES, G. L.; REICHENBERGER, S.; ROSENBOM, A. E.; STAUDENMAIER, H.; SUR, R.; SCHWEN, A.; STEMMER, M.; TÜTING, W.; ULRICH, U. Conducting groundwater monitoring studies in Europe for pesticide active substances and their metabolites in the context of Regulation (EC) 1107/2009. Journal of Consumer Protection and Food Safety, v. 14, p. 1-93, 2019. Available at: <https://doi.org/10.1007/s00003-019-01211-x>. Accessed on: Aug. 30, 2019.

GOBIRA, A. K. M. Simulação hidrológica utilizando o método rain shower (SCS-CN) para a Bacia do Açude Edson Queiroz. Santa Quitéria, Ceará. 59f. Trabalho de Conclusão de Curso (Graduação) – Curso de Agronomia, Centro de Ciências Agrárias, Universidade Federal do Ceará Fortaleza, 2017.

GONÇALVES, R. M.; SALEEM, A.; QUEIROZ, H. A. A.; AWANGE, J. L. A fuzzy model integrating shoreline changes. NDVI and settlement influences for coastal zone human impact classification. Applied Geography, v. 113, p. 102093, 2019. Available at: <https://doi.org/10.1016/j.apgeog.2019.102093>. Accessed on: Feb. 12, 2020.

GUNDA, T.; HESS, H. D.; HORNBERGER, G. M.; WORLAND, S. Water security in practice: The quantity-quality-society nexus. Water Security, v. 6, 100022, 2019. Available at: <https://doi.org/10.1016/j.wasec.2018.100022>. Accessed on: July 20, 2019.

HE, B.; HE, J.; WANG, L.; ZHANG, X.; BI, E. Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: Based on least squares surface fitting model. Water Research, v. 163, p. 114880, 2019. Available at: <https://doi.org/10.1016/j.watres.2019.114880>. Accessed on: Aug. 30, 2019.

INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE). Ceará em Mapas. IPECE, 2020. Available at: <http://www2.ipece.ce.gov.br/atlas/>. Accessed on: Feb. 6, 2020.

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE). Topodata: banco de dados geomorfométricos. INPE, 2009. Available at: <http://www.dsr.inpe.br/topodata/documentos.php>. Accessed on: June 6, 2019.

ISMAEL, L. L.; ROCHA, E. M. R. Estimate of the contamination of groundwater and surface water due to agrochemicals in the sugar-alcohol area. Santa Rita, State of Paraíba, Brazil. Ciência e Saúde Coletiva, v. 24, n. 12, p. 4665-4676, 2019. Available at: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-81232019001204665&lng=en&nrm=iso&tlng=en>. Accessed on: Feb. 6, 2019. http://dx.doi.org/10.1590/1413-812320182412.27762017

KADAOUI, M.; BOUALI, A.; ARABI, M. Assessment of physicochemical and bacteriological groundwater quality in irrigated Triffa Plain. North-East of Morocco. Journal of Water and Land Development, v. 42, n. 1, p. 100-109, 2019. Available at: <https://doi.org/10.2478/jwld-2019-0050>. Accessed on: Aug. 30, 2019.

LACERDA, L.; MARINS, R.; VAISMAN, A.; MAIA, S. R. R.; AGUIAR, J. E.; DIAS, F. J. S. Contaminação por metais pesados e pesticidas nas bacias inferiores dos Rios Curimataú e Açu (RN) e Rio Jaguaribe (CE). 2004. Available at: <https://abccam.com.br/wp-content/uploads/2011/02/Metais_Pesados_ABCC.pdf>. Accessed on: Feb. 10, 2020.

LIN, W. Y.; YAYA, S. The antipollution evaluation of phreatic water by comprehensive index evaluation model based on the Bayes. Earth and Environmental Science, v. 199, 022032, 2018. Available at: <https://doi.org/10.1088/1755-1315/199/2/022032>. Accessed on: Aug. 30, 2019.

MARCON, A. E.; MARTIN, C. A.; STEIN, P. Análise das Águas do Aquífero Jandaíra em Apoio ao Programa Água Doce no Rio Grande do Norte (PAD/RN). In: SIMPÓSIO DE RECURSOS HÍDRICOS DO NORDESTE, 12., 2014. Natal, 2014. Available at: <http://eventos.abrh.org.br/xiisrhn/anais/papers/PAP018185.pdf>. Accessed on: Feb. 4, 2020.

MARTINI, L. F. D.; CALDAS, S. S.; BOLZAN, C. M.; BUNDT, A. C.; PRIMEL, E. G.; AVILA, L. A. Risco de contaminação das águas de superfície e subterrâneas por agrotóxicos recomendados para a cultura do arroz irrigado. Ciência Rural, v. 42, n. 10, p. 1715-1721, 2012. Available at: <https://doi.org/10.1590/s0103-84782012001000001>. Accessed on: Feb. 10, 2020.

MILHOME, M. A. L. Influência do uso de agrotóxicos na qualidade dos recursos hídricos da região do perímetro irrigado Jaguaribe-Apodi/CE. 148f. Thesis (Doutorado) – Programa de Pós-Graduação em Engenharia Civil: Saneamento Ambiental, Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2011. Available at: <http://www.repositorio.ufc.br/handle/riufc/17218>. Accessed on: June 27, 2019.

MILHOME, M. A. L.; SOUSA, D. O. B.; LIMA, F. A. F.; NASCIMENTO, R. F. Assessment of surface and groundwater potential contamination by agricultural pesticides applied in the region of Baixo Jaguaribe. CE. Brazil. Engenharia Sanitária e Ambiental, v. 14, n. 3, p. 363-372, jul./set. 2009. Available at: <http://dx.doi.org/10.1590/S1413-41522009000300010>. Accessed on: July 15, 2019.

MOMEJIAN, N.; ABOU NAJM, M.; ALAMEDDINE, I.; EL-FADEL, M. Can groundwater vulnerability models assess seawater intrusion? Environmental Impact Assessment Review, v. 75, p. 13-26, 2019. Available at: <https://doi.org/10.1016/j.eiar.2018.10.003>. Accessed on: July 15, 2019.

MOUSTAFA, M. Assessing perched aquifer vulnerability using modified DRASTIC: a case study of colliery waste in north-east England (UK). Hydrogeology Journal, v. 27, p. 1837-1850, 2019. Available at: <https://doi.org/10.1007/s10040-019-01932-1>. Accessed on: Aug. 29, 2019.

NADIRI, A. A.; NOROUZI, H.; KHATIBI, R.; GHAREKHANI, M. Groundwater DRASTIC Vulnerability Mapping by Unsupervised and Supervised Techniques Using a Modelling Strategy in Two Levels. Journal of Hydrology, v. 574, p. 744-759, 2019. Available at: <https://doi.org/10.1016/j.jhydrol.2019.04.039>. Accessed on: June 29, 2019.

NEVES, M. C.; GOMES, M. A.; LUIZ, A. J. B.; SPADOTTO, C. A. Sistema de Informação Geográfica na avaliação de impacto ambiental por agroquímicos. In: SISTEMA DE INFORMAÇÕES GEOGRÁFICAS: Aplicação na Agricultura. 2. ed. Brasília: Embrapa/CPAC, 1998. 434 p.

NISTOR, M.-M. Groundwater vulnerability in Europe under climate change. Quaternary International, v. 547, p. 185-196, 2020. Available at: <https://doi.org/10.1016/j.quaint.2019.04.012>. Accessed on: Aug. 29, 2019.

NOBRE, R. C. M.; ROTUNNO FILHO, O. C.; MANSUR, W. J.; NOBRE, M. M. M.; COSENZA, C. A. N. Groundwater vulnerability and risk mapping using GIS. modeling and a fuzzy logic tool. Journal of Contaminant Hydrology, v. 94, n. 3-4, p. 277-292, 2007. Available at: <https://doi.org/10.1016/j.jconhyd.2007.07.008>. Accessed on: Feb. 12, 2020.

NOVOA, V.; AHUMADA-RUDOLPH, R.; ROJAS, O.; SÁEZ, K.; BARRERA, F.; ARUMÍ, J. L. Understanding agricultural water footprint variability to improve water management in Chile. Science of the Total Environment, v. 670, p. 188-199, 2019. Available at: <https://doi.org/10.1016/j.scitotenv.2019.03.127>. Accessed on: Aug. 23, 2019.

OKADERA, T.; WANG, Q-X; DENI, E; NAKAYAMA, T. Groundwater monitoring for evaluating the pasture carrying capacity and its vulnerability in arid and semi-arid regions: A case study of urban and mining areas in Mongolia. Earth and Environmental Science, v. 266, 012013, 2018. Available at: <https://doi.org/10.1088/1755-1315/266/1/012013>. Accessed on: Aug. 30, 2019.

OLIVEIRA, A. H. B. de. Avaliação Ambiental e Forma de Transporte de Agrotóxicos Organoclorados no Rio Jaguaribe-CE. 102f. Dissertation (Mestrado) – Programa de Pós-Graduação em Ciências Marinhas Tropicais do Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, 2012.

RESHMA, R.; SINDHU, G. Assessment of groundwater vulnerability to contamination: a case study. Environmental Monitoring and Assessment, v. 191, n. 6, 356, 2019. Available at: <https://doi.org/10.1007/s10661-019-7493-1>. Accessed on: Aug. 30, 2019.

SAKALA, E.; FOURIE, F.; GOMO, M.; COETZEE, H. GIS-based groundwater vulnerability modelling: A Case Study of the Witbank. Ermelo and Highveld Coalfields in South Africa. Journal of African Earth Sciences, v. 137, p. 46-60, 2018. Available at: <https://dx.doi.org/10.1016/j.jafrearsci.2017.09.012>. Accessed on: July 15, 2019.

SANTOS, T. L.; NUNES, A. B. A.; GIONGO, V.; BARROS, V. S.; FIGUEIRÊDO, M. C. B. de. Cleaner fruit production with green manure: the case of Brazilian melos. Journal of Cleaner Production, v. 181, p. 260-270, 2018. Available at: <https://doi.org/10.1016/j.jclepro.2017.12.266>. Accessed on: July 15, 2019.

SECRON, M. B.; MONTAÑO, M.; MIGUEZ, M. G.; JONOSKI, A.; AZEVEDO, J. P. S.; POPESCU, I.; ROSMAN, P. C. C. Proposal of a hydric index to support industrial site location decision-making applying a fuzzy multi-attribute methodology. Ecological Indicators, v. 83, p. 427-440, 2017. Available at: <http://dx.doi.org/10.1016/j.ecolind.2017.08.002>. Accessed on: June 29, 2019.

SIQUEIRA, T. Emprego de Sources de contaminação de diferentes geometrias nas estimativas do risco à saúde humana devido à ingestão de água subterrânea contaminada. Revista Brasileira de Ciências Ambientais (Online), n. 43, p. 85-100, 2017. Available at: <https://doi.org/10.5327/Z2176-947820170113>. Accessed on: July 1, 2020.

SORANDO, R.; COMÍN, F. A.; JIMÉNEZ, J. J.; SÁNCHEZ-PÉREZ, J. M.; SAUVAGE, S. Water resources and nitrate discharges in relation to agricultural land uses in an intensively irrigated watershed. Science of The Total Environment, v. 659, p. 1293-1306, 2019. Available at: <https://doi.org/10.1016/j.scitotenv.2018.12.023>. Accessed on: Aug. 23, 2019.

SOTO, M.; KIANG, C. Avaliação da condutividade hidráulica em dois usos do solo na região central do Brasil. Revista Brasileira de Ciências Ambientais (Online), n. 47, p. 1-11, 2018. Available at: <https://doi.org/10.5327/Z2176-947820180169>. Accessed on: July 1, 2020.

STADDON, C.; SCOTT, C. A. Putting water security to work: addressing global challenges. Water International, v. 43, n. 8, p. 1017-1025, 2018. Available at: <https://doi.org/10.1080/02508060.2018.1550353>. Accessed on: June 27, 2019.

TEIXEIRA, Z. A. Processos determinantes da qualidade das águas subterrâneas da Formação Jandaíra na Chapada do Apodi/CE. 144f. Thesis (Doutorado) – Departamento de Geologia, Programa de Pós-Graduação em Geologia, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015.

TIBEBE, D.; KASSA, Y.; MELAKU, A.; LAKEW, S. Investigation of spatio-temporal variations of selected water quality parameters and trophic status of Lake Tana for sustainable management. Ethiopia. Microchemical Journal, v. 148, p. 374-384, 2019. Available at: <https://doi.org/10.1016/j.microc.2019.04.085>. Accessed on: Aug. 23, 2019.

USSAMI, K. A.; GUILHOTO, J. J. M. Economic and water dependence among regions: The case of Alto Tiete. Sao Paulo State. Brazil. Economia, v. 19, n. 3, p. 350-376, Sept./Dec. 2018. Available at: <https://doi.org/10.1016/j.econ.2018.06.001>. Accessed on: Aug. 23, 2019.

WEIHS, M.; SAYAGO, D.; TOURRAND, J.-F. Dinâmica da fronteira agrícola do Mato Grosso e implicações para a saúde. Estudos Avançados, v. 31, n. 89, p. 323-338, 2017. Available at: <https://doi.org/10.1590/s0103-40142017.31890024>. Accessed on: Feb. 6, 2020.

ZHAN, X.; HUANG, M.-L. ArcCN-Runoff: an ArcGIS tool for generating curve number and runoff maps. Environmental Modelling & Software, v. 19, n. 10, p. 875-879, 2004. Available at: <https://doi.org/10.1016/j.envsoft.2004.03.001>. Accessed on: Apr. 21, 2020.

Downloads

Published

2020-10-19

How to Cite

Soares, R. B., Silva, S. M. O., Souza Filho, F. de A. de, Studart, T. M. de C., & Frota, R. L. (2020). GROUNDWATER VULNERABILITY TO AGROCHEMICAL CONTAMINATION. Revista Brasileira De Ciências Ambientais (RBCIAMB), 55(4), 440–455. https://doi.org/10.5327/Z2176-947820200531