Analysis of average annual temperatures and rainfall in southern region of the state of Rio Grande do Sul, Brazil

Main Article Content

Iulli Pitone Cardoso
https://orcid.org/0000-0001-6492-5465
Tirzah Moreira Siqueira
https://orcid.org/0000-0002-6576-0217
Luis Carlos Timm
https://orcid.org/0000-0003-2916-8125
Aryane Araujo Rodrigues
https://orcid.org/0000-0002-5338-682X
André Becker Nunes
https://orcid.org/0000-0002-4881-5810

Abstract

This work aimed to analyze the average temperature and rainfall in the Southern and Steppe regions of the State of Rio Grande do Sul, Brazil, obtained by three global climate models regionalized by the Eta model (CANESM2, HADGEM2-ES and MIROC5) for the historical period, and two future climate scenarios (RCP 4.5 and RCP 8.5), subdivided into three periods: F1 (2006-2040), F2 (2041-2070), and F3 (2071-2099). The analysis was conducted by applying the trend tests Mann Kendall’s, Sen’s Slope and Pettitt’s to the dataset. The study noted an increase in temperature, and that the highest temperatures will occur at the end of the century. For the three climate models, temperatures will be milder in the RCP 4.5 scenario, mostly, when compared to the RCP 8.5. For those scenarios, a significant increase up to 0.95 C/year was observed in the temperature of all series, with the years of change in the mean values occurring between 2048 and 2060. The projections also suggest that there may be an increase in the average accumulated rainfall in the future periods analyzed, with exception of the result found with CANESM2 model at the RCP 8.5 scenario, which showed a significant decrease of annual rainfall in all series, ranging approximately from -3,1 to -6,6 mm/year. Those significant changes in mean of the rainfall series are expected for the late 2070’s. With exception of this result, most cities and models indicate an increase in rainfall regimes, with clear variations between models and scenarios.

Article Details

How to Cite
Cardoso, I., Siqueira, T., Timm, L. C., Rodrigues, A., & Nunes, A. (2022). Analysis of average annual temperatures and rainfall in southern region of the state of Rio Grande do Sul, Brazil. Brazilian Journal of Environmental Sciences (Online), 57(1), 58-71. https://doi.org/10.5327/Z2176-94781204
Section
Articles
Author Biographies

Iulli Pitone Cardoso, Universidade Federal de Pelotas (UFPEL)

Doctoral Student in Water Resources, Technological Development Center, Federal University of Pelotas, Pelotas, Brazil.

Tirzah Moreira Siqueira, Federal University of Pelotas (UFPEL)

Professor at Engineering Center, Federal University of Pelotas, Pelotas, Brazil.

Luis Carlos Timm, Federal University of Pelotas (UFPEL)

Professor at Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, Brazil.

Aryane Araujo Rodrigues, Federal University of Pelotas (UFPEL)

Doctoral Student in Water Resources, Technological Development Center, Federal University of Pelotas, Pelotas, Brazil.

André Becker Nunes, Federal University of Pelotas (UFPEL)

Professor at Faculty of Meteorology, Federal University of Pelotas, Pelotas, Brazil.

References

Anjos, R.R.; Siqueira, T.M.; Silveira, V.C. da; Leandro, D.; Corr a, L.B.; Buske,
D.; Weymar, G.J., 2018. An lise de tend ncia de temperatura e precipita  o e
cen rios de mudan as clim ticas para Pelotas (RS). Revista Ibero-Americana
de Ci ncias Ambientais, v. 9, (8), 93-108. http://doi.org/10.6008/CBPC2179-
6858.2018.008.0009.
Arora, V.K.; Scinocca, J.F.; Boer, G.J.; Christian, J.R.; Denman, K.L.; Flato,
G.M.; Kharin, V.V.; Lee, W.G.; Merryfield, W.J., 2011. Carbon emission
limits required to satisfy future representative concentration pathways of
greenhouse gases. Geophysical Research Letters, v. 38, (5), 1-6. https://doi.
org/10.1029/2010GL046270.
Bravo, J.M.; Marques, D. da M.; Tassi, R.; Cardoso, A., 2011. Avalia  o de
proje  es de anomalias de temperatura e precipita  o em cen rios clim ticos
futuros na regi o do sistema hidrol gico do Taim, RS. In: XIX Simp sio
Brasileiro de Recursos H dricos.
Braz, D.F.; Pinto, L.B.; Campos, C.R.J., 2017. Ocorr ncia de eventos severos em
regi es agr colas do Rio Grande do Sul. Geoci ncias, v. 36, (1), 89-99.
Britto, F.P.; Barletta, R.; Mendon a, M., 2008. Regionaliza  o sazonal e mensal
da precipita  o pluvial m xima no estado do Rio Grande do Sul. Revista
Brasileira de Climatologia, v. 3, 83-99. https://doi.org/10.5380/abclima.
v3i0.25425.
Brondani, A.R.P.; Wollmann, C.A.; Ribeiro, A. de A., 2013. A percep  o
clim tica da ocorr ncia de estiagens e os problemas de abastecimento de
 gua na  rea urbana do munic pio de Bag -RS. Revista do Departamento de
Geografia , v. 26, 214-232. https://doi.org/10.7154/RDG.2013.0026.0011.
Caballero, C.B.; Ogassawara, J.F.; Dorneles, V.R.; Nunes, A.B., 2018. A
precipita  o pluviom trica em Pelotas/RS: tend ncia, sistemas sin ticos
associados e influ ncia da ODP. Revista Brasileira de Geografia F sica, v. 11,
(4), 1429-1441. https://doi.org/10.26848/rbgf.v11.4.p1429-1441.
Cera, J.C.; Ferraz, S.E.T., 2015. Varia  es clim ticas na precipita  o no Sul do
Brasil no clima presente e futuro. Revista Brasileira de Meteorologia, v. 30, (1),
81-88. https://doi.org/10.1590/0102-778620130588.
Chou, S.C.; Lyra, A.; Mour o, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.;
Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D; Campos, D.; Chagas,
D.; Sueiro, G.; Siqueira, G.; Marengo, J., 2014a. Assessment of climate
change over South America under RCP 4.5 and 8.5 downscaling scenarios.
American Journal of Climate Change, v. 3, 512-525. https://doi.org/10.4236/
ajcc.2014.35043.
Chou, S.C.; Lyra, A.; Mour o, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.;
Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; Campos, D.; Chagas,
D.; Sueiro, G.; Siqueira, G.; Nobre, P.; Marengo, J., 2014b. Evaluation of the
Eta simulations nested in three global climate models. American Journal of
Climate Change, v. 3, (5), 438-454. https://doi.org/10.4236/ajcc.2014.35039.
Chou, S.C.; Marengo, J.A.; Lyra, A.A.; Sueiro, G.; Pesquero, J.F.; Alves, L.M.;
Kay, G.; Betts, R.; Chagas, D.J.; Gomes, J.L.; Bustamnte, J.F.; Tavares, P., 2012.
Downscaling of South America present climate driven by 4-member HadCM3
runs. Climate Dynamics, v. 38, 635-653. https://doi.org/10.1007/s00382-011-
1002-8.
Chylek, P.; Li, J.; Dubey, M.K.; Wang, M.; Lesins, G., 2011. Observed and
model simulated 20th century Arctic temperature variability: Canadian earth
system model CanESM2. Atmospheric Chemistry and Physics, v. 11, 22893-
22907. https://doi.org/10.5194/acpd-11-22893-2011.
Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein,
P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; Shongwe, M.; Tebaldi, C.;
Weaver, A.J.; Wehner, M., 2013. Long-term climate change: projections, commitments
and irreversibility. In: Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor,
M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.),
Climate change 2013: the physical science basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press, Cambridge, pp. 1029-1136.
Dariane, A.B.; Pouryafar, E., 2021. Quantifying and projection of the relative
impacts of climate change and direct human activities on streamflow
fluctuations. Climatic Change, v. 165, (1), 34. https://doi.org/10.1007/s10584-
021-03060-w.
Dereczynski, C.; Chou, S.C.; Lyra, A.; Sondermann, M.; Regoto, P.; Tavares, P.;
Chagas, D.; Gomes, J.L.; Rodrigues, D.C.; Skansi, M. M., 2020. Downscaling
of climate extremes over South America – Part I: Model evaluation in the reference climate. Weather and Climate Extremes, v. 29, 100273. https://doi.
org/10.1016/j.wace.2020.100273.
Di rio Popular, 2021. Barragem Santa B rbara recupera n vel ideal para
capta  o de  gua (Accessed on June 17, 2021) at.: https://www.diariopopular.
com.br/geral/barragem-santa-barbara-recupera-nivel-ideal-para-captacao-deagua-
158182.
Fazel-Rastgar, F., 2020. Synoptic climatological approach associated with
three recent summer heatwaves in the Canadian Arctic. Journal of Water and
Climate Change, v. 11, (S1), 233-250. https://doi.org/10.2166/wcc.2020.281.
Fernandes, V.R.; Cunha, A.P.M. do A.; Pineda, L.A.C.; Leal, K.R.D.; Costa,
L.C.O.; Broedel, E.; Fran a, D. de A.; Alval , R.C. dos S.; Selichi, M.E.;
Marengo, J., 2021. Secas e os impactos na regi o Sul do Brasil. Revista
Brasileira de Climatologia, v. 28, 561-584. https://doi.org/10.5380/rbclima.
v28i0.74717.
Funda  o de Economia e Estat stica (FEE), 2015. COREDES (Accessed on June 17,
2021) at:. https://arquivofee.rs.gov.br/perfil-socioeconomico/coredes/#:~:text=O%20
PERFIL%20SOCIOECON%C3%94MICO%20RS%20%E2%80%93%20
COREDES,munic%C3%ADpios%20com%20o%20do%20Estado.
Gomes Junior, E.C.; Ely, D.F., 2021. M todos estat sticos n o-param tricos
como ferramenta no monitoramento pluviom trico. Revista da Casa da
Geografia de Sobral, v. 23, 38-53. https://doi.org/10.35701/rcgs.v23.770.
Gon alves, F.N.; Back, A.J., 2018. An lise da varia  o espacial e sazonal e de
tend ncias na precipita  o da regi o sul do Brasil. Revista de Ci ncias Agr rias
(Online), v. 41, (3), 11-20. https://doi.org/10.19084/RCA17204.
Grimm, A.M., 2009. Variabilidade interanual do clima no Brasil. In:
Cavalcanti, I.F.A.; Ferreira, N.J.; Silva, M.G.A.J.; Dias, M.A.F.S. (Eds.), Tempo e
clima no Brasil. Oficina de Textos, S o Paulo, pp. 353-374.
Grimm, A.M.; Ferraz, S.E.T.; Gomes, J., 1998. Precipitation anomalies
in Southern Brazil associated with El Ni o and La Ni a events.
Journal of Climate, v. 11, 2863-2880. https://doi.org/10.1175/1520-
0442(1998)011<2863:PAISBA>2.0.CO;2.
Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.;
Br nnimann, S.; Charabi, Y.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.;
Kaplan, A.; Soden, B.J.; Thorne, P.W.; Wild, M.; Zhai, P.M., 2013. Observations:
atmosphere and surface. In: Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.;
Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.),
Climate change 2013: the physical science basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press, Cambridge, pp. 159-254.
H lbig, C.A.; Mazzonetto, A.; Borella, F.; Pavan, W.; Fernandes, J.M.C.;
Chagas, D.J.C.; Gomes, J.L.; Chou, S.C., 2018. PROJETA platform: accessing
high resolution climate change projections over Central and South America
using the Eta model. Agrometeoros, v. 26, (1), 71-81. https://doi.org/10.31062/
agrom.v26i1.26366.
Intergovernmental Panel on Climate Change (IPCC), 2013. Climate change
2013: the physical science basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge.
Kendall, M.G., 1975. Rank correlation methods, 4th ed. Charles Griffin,
London, 272 pp.
Kulman, D.; Reis, J.T.; Souza, A.C. de; Pires, C.A. da F.; Sausen, T.M., 2014.
Occurrence of drought in Rio Grande do Sul in the period 1981 to 2011.
Ci ncia e Natura, v. 36, (3), 441-449. https://doi.org/10.5902/2179460X13205.
Lima, P.R.C. de; Andrade, A.E. de; Oliveira, J.V.P. de; Lucena, D.B.,
2021. Identifica  o de tend ncias nas s ries temporais de precipita  o
na microrregi o do Alto Sert o Paraibano. Revista AIDIS de Ingenier a
y Ciencias Ambientales, v. 14, (1), 1-18. https://doi.org/10.22201/
iingen.0718378xe.2021.14.1.63570.
Lopes, A.B.; Vieira, M.R.S.; Lima Filho, A.A. de; Silvestrim, E.G.; Silvestrim,
F.G., 2021. Anomalias na precipita  o de quatro munic pios do Amazonas,
Brasil. Research, Society and Development. v. 10, (14), e196101421766. https://
doi.org/10.33448/rsd-v10i14.21766.
Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.P.; Sondermann,
M.; Silva, A.; Marengo, J.; Giarolla, A., 2018. Climate change projections over
three metropolitan regions in Southeast Brazil using the non-hydrostatic
Eta regional climate model at 5-km resolution. Theoretical and Applied
Climatology, v. 132, 663-682. https://doi.org/10.1007/s00704-017-2067-z.
Mann, H.B.; Whitney, D.R., 1947. On a test of whether one of two random
variables is stochastically larger than the other. Annals of Mathematical
Statistics, v. 18, (1), 50-60. https://doi.org/10.1214/aoms/1177730491.
Marengo, J.A.; Ambrizzi, T.; Rocha, R.P.; Alves, L.M.; Cuadra, S.V.; Valverde,
M.C.; Torres, R.R.; Santos, D.C.; Ferraz, S.E.T., 2010. Future change of climate
in South America in the late XXI century: intercomparison of scenarios from
three regional climate models. Climate Dynamics, v. 35, 1073-1097. https://doi.
org/10.1007/s00382-009-0721-6.
Martin, G.M.; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.;
Hardiman, S.C.; Hinton, T.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; O’Connor,
F.; Roberts, M.J.; Rodriguez, J.M.; Woodward, S.; Best, M.J.; Brooks, M.E.;
Brown, A.R.; Butchart, N.; Dearden, C.; Derbyshire, S.H.; Dharssi, I.; Doutriaux-
Boucher, M.; Edwards, J.M.; Falloon, P.D.; Gedney, N.; Hewitt, H.T.; Hobson, M.;
Huddleston, M.R.; Hughes, J.; Ineson, S.; Ingram, W.J.; James, P.M.; Johns, T.C.;
Johnson, C.E.; Jones, A.; Jones, C.P.; Joshi, M.; Keen, A.B.; Liddicoat, S.; Lock, A.P.;
Maidens, A.V.; Manners, J.C.; Milton, S.F.; Rae, J.; Ridley, J.K.; Sellar, A.; Senior,
C.A.; Totterdell, I.; Verhoef, A.; Vidale, P.L.; Wiltshire, A., 2011. The hadGEM2
family of Met Office unified model climate configurations. Geoscientific Model
Development, v. 4, 723-757. https://doi.org/10.5194/gmd-4-723-2011.
Mesinger, F.; Chou, S.C.; Gomes, J.L.; Jovic, D.; Bastos, P.R.; Bustamante, J.F.;
Lazic, L.; Lyra, A.A.; Morelli, S.; Ristic, I.; Veljovic, K., 2012. An upgraded
version of the Eta model. Meteorogical and Atmospheric Physics, v. 116, 63-79.
https://doi.org/10.1007/s00703-012-0182-z.
Miguel, J.C.H., 2017. Tecnopol ticas das mudan as clim ticas: modelos
clim ticos, geopol tica e governamentalidade. Hist ria, Ci ncias, Sa de-
Manguinhos, v. 24, (4), 969-987.
Moura, R.G. de; Herdies, D.L.; Mendes, D.; Mendes, M.C.D., 2010. Avalia  o
do modelo regional ETA utilizando as an lises do CPTEC e NCEP. Revista
Brasileira de Meteorologia, v. 25, (1), 46-53. https://doi.org/10.1590/S0102-
77862010000100005.
Nedel, A.; Sauden, T.M.; Saito, S.M., 2012. Zoneamento dos desastres naturais
ocorridos no estado do Rio Grande do Sul no per odo 1989 – 2009: granizo e
vendaval. Revista Brasileira de Meteorologia, v. 27, (2), 119-126. https://doi.
org/10.1590/S0102-77862012000200001.
Nunes, A.B.; Silva, G.C., 2013. Climatology of extreme rainfall events in
eastern and northern Santa Catarina State, Brazil: present and future climate.
Revista Brasileira de Geof sica, v. 31, (3), 413-425. https://doi.org/10.22564/
rbgf.v31i3.314.
Oliveira, L.F.C., 2019. (Ed.). Chuvas extremas no Brasil: modelos e aplica  es.
Ed. UFLA, Lavras.
Ongoma, V.; Chen, H.; Gao, C.; Nyongesa, A.M.; Polong, F. 2018. Future
changes in climate extremes over Equatorial East Africa based on CMIP5
multimodel ensemble. Natural Hazards, v. 90, 901-920. https://doi.
org/10.1007/s11069-017-3079-9.
Ouhamdouch, S.; Bahir, M.; Ouazar, D.; Goumih, A.; Zouari, K., 2020.
Assessment the climate change impact on the future evapotranspiration and
flows from a semi-arid environment. Arabian Journal of Geosciences, v. 13, 82.
https://doi.org/10.1007/s12517-020-5065-x.
Penereiro, J.C.; Meschiatti, M.C., 2018. Tend ncias em s ries anuais de
precipita  o e temperaturas no Brasil. Engenharia Sanit ria e Ambiental, v. 23,
(2), 319-331. https://doi.org/10.1590/S1413-41522018168763.
Pereira, R.S.; Nunes, A.B., 2018. Estudo clim tico dos eventos de precipita  o
associados a alagamentos urbanos no Estado do Rio Grande do Sul. Revista
Brasileira de Geografia F sica, v. 11, (6), 2010-2017. https://doi.org/10.26848/
rbgf.v11.6.p2010-2017.
Pettitt, A.N., 1979. A non-parametric approach to the change-point problem.
Journal of the Royal Statistical Society: Series C (Applied Statistics), v. 28, (2),
126-135. https://doi.org/10.2307/2346729.
Queiroga, A.A.; Luz, M.B.; Filgueira, HJ. A., 2022. A redu  o de riscos
de desastres (RRD) e a resili ncia na seguran a alimentar e nutricional.
Territorium, (29 I), 139-148. https://doi.org/10.14195/1647-7723_29-1_12.
Quesada-Montano, B.; Di Baldassarre, G.; Rangecroft, S.; Van Loon, A.F., 2018.
Hydrological change: Towards a consistent approach to assess changes on both
floods and droughts. Advances in Water Resources, v. 111, 31-35. https://doi.
org/10.1016/j.advwatres.2017.10.038.
Radin, B.; Matzenauer, R., 2016. Uso das informa  es meteorol gicas na
agricultura do Rio Grande do Sul. Agrometeoros, v. 24, (1), 41. https://doi.
org/10.31062/agrom.v24i1.24880.
Rao, V.B.; Hada, K., 1990. Characteristics of rainfall over Brazil: Annual
variations and connections with the Southern Oscillation. Theoretical
and Applied Climatology (Online), v. 42, 81-91. https://doi.org/10.1007/
BF00868215.
Ribeiro, M.E.; Bortolin, T.A.; Mendes, L.A.; Santa Rita, L.C.S., 2021. An lise de
S ries Hidrol gicas na Bacia Hidrogr fica afluente   Usina Hidrel trica Castro
Alves, RS. Revista Brasileira de Geografia F sica, v. 14, (4), 2042-2058. https://
doi.org/10.26848/rbgf.v14.4.p2042-2058.
Rocha, G., 2011. Cidade do RS sofre pior inunda  o em 70 anos. Folha de
S.Paulo (Accessed on December 18, 2021) at:. https://www1.folha.uol.com.br/
fsp/cotidian/ff1203201120.htm.
Salviano, M.F.; Groppo, J.D.; Pellegrino, G.Q., 2016. An lise de Tend ncias em
Dados de Precipita  o e Temperatura no Brasil. Revista Brasileira de Meteorologia
(Online), v. 31, (1), 64-73. https://doi.org/10.1590/0102-778620150003.
Sane, M.; Sambou, S.; Diatta, S.; Leye, I.; Ndione, D.; Sauvage, S.; Sanchez-
Perez, J.M.; Kane, S., 2019. Trends and shifts in time series of climate data
generated by GCM from 2006 to 2090. International Journal of Scientific
& Engineering Research, v. 10, (5), 212-229. https://doi.org/10.14299/
ijser.2019.05.01.
Sansigolo, C.A.; Kayano, M.T., 2010. Trends of seasonal maximum and
minimum temperatures and precipitation in Southern Brazil for the 1913-2006
period. Theoretical and Applied Climatology, v. 101, 209-216. https://doi.
org/10.1007/s00704-010-0270-2.
Secretaria de Planejamento, Governan a e Gest o (Seplag), 2020. Clima,
temperatura e precipita  o. Atlas Socioecon mico Rio Grande do Sul. 5.
Ed. Secretaria de Planejamento, Governan a e Gest o, Departamento de
Planejamento Governamental, Porto Alegre, 125 pp.
Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau.
Journal of the American Statistical Association, v. 63, (324), 1379-1389.
Silva, G.K.; Silveira, C.S.; Silva, M.V.M.; Marcos J nior, A.D.; Souza Filho, F.A.,
Guimar es, S.O., 2020. An lise de proje  es das mudan as clim ticas sobre
precipita  o e temperatura nas regi es hidrogr ficas brasileiras para o s culo
XXI. Revista Brasileira de Ci ncias Ambientais, v. 55, (3), 420-436. https://doi.
org/10.5327/Z2176-947820200624.
Silveira, A., 2020. Barragem Santa B rbara em Pelotas atinge n vel mais
baixo da hist ria. Correio do Povo (Accessed on December 17, 2021) at:.
https://www.correiodopovo.com.br/not%C3%ADcias/cidades/barragemsanta-
b%C3%A1rbara-em-pelotas-atinge-n%C3%ADvel-mais-baixo-dahist%
C3%B3ria-1.423776.
Tejadas, B.E.; Bravo, J.M.; Sanagiotto, D.G.; Tassi, R.; Marques, D.M.L.M.,
2016. Proje  es de vaz o afluente   Lagoa Mangueira com base em cen rios de
mudan as clim ticas. Revista Brasileira de Meteorologia, v. 31, (3), 262-272.
https://doi.org/10.1590/0102-778631320150139.
Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard,
K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.; Masui, T.; Meinshausen, M.;
Nakicenovic, N.; Smith, S.J.; Rose, S.K., 2011. The representative concentration
pathways: an overview. Climatic Change, v. 109, 5. https://doi.org/10.1007/
s10584-011-0148-z.
Vieira, R.M.G.; Dereczynski, C.P.; Chou, S.C.; Gomes, J.L.; Paiva Neto, A.C.,
2015. Avalia  o das previs es de precipita  o do modelo Eta para Bacia do Rio
S o Francisco em Minas Gerais, Brasil. Anu rio do Instituto de Geoci ncias, v.
38, (2), 15-23. https://doi.org/10.11137/2015_2_15_23.
Watanabe, M.; Suzuki, T.; O’ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.;
Takemura, T.; Chikira, M.; OGura, T.; Sekiguchi, M.; Takata, K.; Yamazak,
D.; Yokohata, T.; Nozawa, T.; Hasumi, H.; Tatebe, H., Kimoto, M., 2010.
Improved climate simulation by MIROC5: mean States, variability, and
climate sensitivity. Journal of Climate, v. 23, (23), 6312-6335. https://doi.
org/10.1175/2010JCLI3679.1.
Winsemius, H.C.; Jongman, B.; Veldkamp, T.I.; Hallegatte, S.; Bangalore,
M.; Ward, P.J., 2018. Disaster risk, climate change, and poverty: assessing
the global exposure of poor people to floods and droughts. Environment
and Development Economics, v. 23, (3), 328-348. https://doi.org/10.1017/
S1355770X17000444.
Yuan, X.C.; Wei, Y.-M.; Wang, B.; Mi, Z., 2017. Risk management of extreme
events under climate change. Journal of Cleaner Production, v. 166, 1169-1174.
https://doi.org/10.1016/j.jclepro.2017.07.209.
Zamani, R.; Mirabbasi, R.; Abdollahi, S.; Jhajharia, D., 2017. Streamflow
trend analysis by considering autocorrelation structure, long-term
persistence, and Hurst coefficient in a semi-arid region of Iran. Theoretical
and Applied Climatology, v. 129, (1-2), 33-45. https://doi.org/10.1007/
s00704-016-1747-4.