Adsorption of methylene blue dye by different methods of obtaining shrimp residue chitin

Authors

DOI:

https://doi.org/10.5327/Z217694781170

Keywords:

biopolymer; dye removal; fishing waste; textile waste.

Abstract

The textile industry, very important for the world economy, generates an effluent containing dyes, and which, when discarded in water bodies without proper treatment, can cause impacts to human health and the environment. One of these widely used dyes is methylene blue, whose characteristics are high solubility in water and its toxic potential, and which effects range from eye irritations, nausea, vomiting and even mental confusion. Among the potential adsorbents of this dye is chitin, which is a biopolymer extracted from the shrimp exoskeleton. Aiming at the development of a low-cost adsorbent material with potential use in the textile effluent treatment industry, the ability to remove methylene blue dye by shrimp residue chitin, obtained by eleven different methodologies, was verified. The three most efficient treatments reached approximately 75% of dye removal, proving the high adsorption power of shrimp residue. In addition to providing technological development of materials, the research brings socioeconomic benefits to the fishermen’s colony with the use of shrimp residue for the adsorption of other waste from the textile industry, contributing to the sustainability of both activities and reducing the environmental impact.

Downloads

Download data is not yet available.

References

Adeeyo, R.O.; Edokpayi, J.N.; Bello, O.S.; Adeeyo, A.O.; Odiyo, J.O., 2019. Influence of selective conditions on various composite sorbents for enhanced removal of copper (II) ions from aqueous environments. International Journal of Environmental Research and Public Health, v. 16, (23), 4596-4614. https://doi.org/10.3390/ijerph16234596.

Ahmad, R.; Ansari, K., 2021. Comparative study for adsorption of congo red and methylene blue dye on chitosan modified hybrid nanocomposite. Process Biochemistry, v. 108, 90-102. http://dx.doi.org/10.1016/j.procbio.2021.05.013.

Ahmed, M.J.; Hameed, B.H.; Hummadi, E.H., 2020. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydrate Polymers, v. 247, 116690-116700. http://dx.doi.org/10.1016/j.carbpol.2020.116690.

Assis, O.B.G.; Brito, D., 2008. Processo básico de extração de quitinas e produção de quitosana a partir de resíduos da carcinicultura. Revista Brasileira de Agrociência. v.14, (1), 91-100. https://doi.org/10.18539/cast.v14i1.1892.

Associação Brasileira da Indústria Têxtil e de Confecção (ABIT). Perfil do Setor. ABIT, 2021 (Accessed March 20, 2021) at: https://www.abit.org.br/cont/perfil-do-setor.

Auta, M.; Hameed, B.H., 2014. Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chemical Engineering Journal, v. 237, 352-361. https://doi.org/10.1016/j.cej.2013.09.066.

Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D., 1999. A review of potentially low-cost sorbents for heavy metals. Water Research. v. 33, (11), 2469-2479. https://doi.org/10.1016/S0043-1354(98)00475-8.

Bajaj, M.; Freiberg, A.; Winter, J.; Xu, Y.; Gallert, C., 2015. Pilot-scale chitin extraction from shrimp sheik waste by desproteination and decalcification with bacterial enrichment cultures. Applied Microbiology and Biotechnology, v. 99, 9835-9846. https://doi.org/10.1007/s00253-015-6841-5.

Barbosa, R.P., 2014. Avaliação de risco e impacto ambiental. Erica, São Paulo.

Bedin, K.C.; Souza, I.P.A.F.; Cazetta, A.L.; Spessato, L.; Ronix, A.; Almeida, V.C., 2018. CO2-spherical activated carbon as a new adsorbent for methylene blue removal: kinetic, equilibrium and thermodynamic studies. Journal of Molecular Liquids, v. 269, 132-139. http://dx.doi.org/10.1016/j.molliq.2018.08.020.

Chang, S.H., 2021. Gold(III) recovery from aqueous solutions by raw and modified chitosan: a review. Carbohydrate Polymers, v. 256, 117423. http://dx.doi.org/10.1016/j.carbpol.2020.117423.

Cunico, P.; Kumar, A.; Fungaro, D.A., 2015. Adsorption of dyes from simulated textile wastewater onto modified nanozeolite from coal fly ash. Journal of Nanoscience and Nanoengineering, v. 1, (3), 148-161 (Accessed December 19, 2020) at: http://repositorio.ipen.br/bitstream/handle/123456789/25780/21710.pdf?sequence=1.

Dotto, G.L.; Santos, J.M.N.; Rodrigues, I.L.; Rosa, R.; Pavan, F.A.; Lima, E.C., 2015. Adsorption of Methylene Blue by ultrasonic surface modified chitin. Journal of Colloid and Interface Science, v. 446, 133-140. http://dx.doi.org/10.1016/j.jcis.2015.01.046.

Dotto, G.L.; Vieira, M.L.G.; Gonçalves, J.O.; Pinto, L.A.A., 2011. Remoção dos corantes azul brilhantes, amarelo crepúsculo e amarelo tartrazina de soluções aquosas utilizando carvão ativado, terra ativada, terra diatomácea, quitina e quitosana: estudo de equilíbrio e termodinâmica. Química Nova, v. 34, (7), 1193-1199. https://doi.org/10.1590/S0100-40422011000700017.

Dragnes, B.T.; Stormo, S.K.; Larsen, R.; Ernstsen, H.H.; Elvevoll, E.O., 2009. Utilisation of fish industry residuals: screening the taurine concentration and angiotensin converting enzyme inhibition potential in cod and Salmon. Journal of Food Composition and Analysis, v. 22, (7-8), 714-717. https://doi.org/10.1016/j.jfca.2009.01.020.

Ferreira, O.P.; Alves, O.L.; Macedo, J.S.; Gimenez, I.F.; Barreto, L.S., 2007. Ecomateriais: desenvolvimento e aplicação de materiais porosos funcionais para proteção ambiental. Química Nova, v. 30, (2), 464-467. https://doi.org/10.1590/S0100-40422007000200039.

Frantz, T.S.; Silveira Jr., N.; Quadro, M.S.; Andreazza, R.; Barcelos, A.A.; Cadaval Jr., T.R.S.; Pinto, L.A.A., 2017. Cu (II) Adsorption from copper mine water by chitosan films and the matrix effects. Environmental Science and Pollution Research International, v. 24, (6), 5908-5917. https://doi.org/10.1007/s11356-016-8344-z.

Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B., 2016. A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, v. 182, 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090.

Honório, L.M.C.; Lucena, G.L.; Silva, A.G.; Santos, V., 2014. Avaliação da adsorção dos corantes azul de metileno (AM) e vermelho congo (VC) pela quitosana reticulada com glutaraldeído. Revista de Química Industrial, 3º trimestre, 35-40 (Accessed January 17, 2021) at: http://www.abq.org.br/rqi/2014/744/RQI-744-pagina35.pdf.

Jawad, A.H.; Abdulhameed, A.S.; Reghioua, A.; Yaseen, Z.M., 2020. Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. International Journal of Biological Macromolecules, v. 163, 756-765. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.014.

Jorge, I.R.; Tavares, F.P.; Santos, K., 2015. Remoção do corante azul de metileno no tratamento de efluentes por adsorção em bagaço de cana de açúcar. Blucher Chemical Engineering Proceedings, v. 2, (1), 491-500. https://doi.org/10.5151/ENEMP2015-LE-730.

Khan, S.; Anas, M.; Malik, A., 2019. Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicology Reports, v. 6, 193-201. https://doi.org/10.1016/j.toxrep.2019.02.002.

Kostag, M.; Seoud, O.A. El., 2021. Sustainable biomaterials based on cellulose, chitin and chitosan composites: a review. Carbohydrate Polymer Technologies and Applications, v. 2, 100079. http://dx.doi.org/10.1016/j.carpta.2021.100079.

Kumaran, S.; Anahas, A.M.P.; Prasannabalaji, N.; Karthiga, M.; Bharathi, S.; Rajasekar, T.; Joseph, J.; Prasad, S.G.; Pandian, S.; Pugazhvendan, S.R.; Aruni, W., 2021. Chitin derivatives of NAG and chitosan nanoparticles from marine disposal yards and their use for economically feasible fish feed development. Chemosphere, v. 281, 130746. https://doi.org/10.1016/j.chemosphere.2021.130746.

Labidi, A.; Salaberria, A.; Fernandes, S.; Labidi, J.; Abderrabba, M., 2019. Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous solution. Materials, v. 12, (3), 361. http://dx.doi.org/10.3390/ma12030361.

Lima, I.S.; Ribeiro, E.S.; Airoldi, C., 2006. O emprego de quitosana quimicamente modificada com anidrido succínico na adsorção de azul de metileno. Química Nova, v. 29, (3), 501-506. https://doi.org/10.1590/S0100-40422006000300018.

Lobo-Recio, M.Á.; Lapolli, F.R.; Belli, T.J.; Folzke, C.T.; Tarpani, R.R.Z., 2013. Study of the removal of residual aluminum through the biopolymers carboxymethylcellulose, chitin, and chitosan. Desalination and Water Treatment, v. 51, (7-9), 1735-1743. http://dx.doi.org/10.1080/19443994.2012.715133.

Longhinotti, E.; Furlan, L.; Laranjeira, M.C.M.; Fávere, V.T., 1996. Adsorção de azul de metileno e croconato amarelo sobre o biopolímero quitina. Química Nova, v. 19, (3), 221-223 (Accessed December 22, 2020) at: http://quimicanova.sbq.org.br/detalhe_artigo.asp?id=4056

Ma, Z.; Liu, D.; Zhu, Y.; Li, Z.; Li, Z.; Tian, H.; Liu, H., 2016. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants. Carbohydrate Polymers, v. 144, 230-237. http://dx.doi.org/10.1016/j.carbpol.2016.02.057.

Mabel, M.M.; Sundararaman, T.R.; Parthasarathy, N.; Rajkumar, J., 2019. Chitin Beads from Peneaus sp. Shells asa Biosorbent for Methylene Blue Dye Removal. Polish Journal of Environmental Studies, v. 28, (4), 2253-2259. http://dx.doi.org/10.15244/pjoes/90359

Müller, L.C.; Alves, A.A.A.; Mondardo, R.I.; Sens, M.L., 2019. Adsorção do azul de metileno em serragem de Pinus elliottii (pinus) e Drepanostachyum falcatum (bambu). Engenharia Sanitária e Ambiental, v. 24, (4), 687-695. http://dx.doi.org/10.1590/s1413-41522019160344.

Oliveira, F.M.; Coelho, L.M.; Melo, E.I., 2018. Avaliação de processo adsortivo utilizando mesocarpo de coco verde para remoção do corante azul de metileno. Matéria, v. 23, (4), 1-14. http://dx.doi.org/10.1590/s1517-707620180004.0557.

Queiroz, M.T.A.; Queiroz, C.A.; Alvim, L.B.; Sabará, M.G.; Leão, M.M.D.; Amorim, C.C., 2019. Reestruturação na forma do tratamento de efluentes têxteis: uma proposta embasada em fundamentos teóricos. Gestão & Produção, v. 26, (1), 1-14. http://dx.doi.org/10.1590/0104-530x1149-19.

Ribeiro, A.G.; Viana, M.; Hattori, G.; Constantino, V.R.; Perotti, G., 2018. Extraction and characterization of biopolymers from exoskeleton residues of the amazon crab Dilocarcinus pagei. Brazilian Journal of Environmental Sciences, v. 50, 97-111. https://doi.org/10.5327/Z2176-947820180398.

Sabar, S.; Aziz, H.A.; Yusof, N.H.; Subramaniam, S.; Foo, K.Y.; Wilson, L.D.; Lee, H.K., 2020. Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution. Reactive and Functional Polymers, v. 151, 104584. http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104584.

Sánchez, L.E., 2013. Avaliação de impacto ambiental: conceitos e métodos. 2. ed. Oficina de Textos, São Paulo.

Shan, H.; Peng, S.; Zhao, C.; Zhan, H.; Zeng, C., 2020. Highly efficient removal of As(III) from aqueous solutions using goethite/graphene oxide/chitosan nanocomposite. International Journal of Biological Macromolecules, v. 164, 13-26. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.108.

Silva, E.O.; Andrade, T.D.; Araújo, E.B.; Zottis, R.; Almeida, A.R.F., 2018. Produção de carvão ativado a partir da palha de azevém para adsorção de corante têxtil. Congrega Urcamp, v. 15, (15), 194-208 (Accessed February 15, 2021) at: http://revista.urcamp.tche.br/index.php/rcjpgp/article/view/2814/1923.

Vieira, S. Análise de variância (ANOVA). Atlas, São Paulo, 2006, 204 pp.

Wan, M.; Qin, W.; Lei, C.; Li, Q.-H.; Meng, M.; Fang, M.; Song, W.; Chen, J.; Tay, F.; Niu, L., 2021. Biomaterials from the sea: future building blocks for biomedical applications. Bioactive Materials, v. 6, (12), 4255-4285. http://dx.doi.org/10.1016/j.bioactmat.2021.04.028.

Wang, L.; Zhang, J.; Wang, A., 2011. Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination, v. 266, (1-3), 33-39.

Yazidi, A.; Sellaoui, L.; Badawi, M.; Dotto, G. L.; Bonilla-Petriciolet, A.; Lamine, A.B.; Erto, A., 2020. Ternary adsorption of cobalt, nickel and methylene blue on a modified chitin: phenomenological modeling and physical interpretation of the adsorption mechanism. International Journal of Biological Macromolecules, v. 158, 595-604. http://dx.doi.org/10.1016/j.ijbiomac.2020.05.022.

Zhao, M.; Zhao, J.; Huang, Z.; Wang, S.; Zhang, L., 2019. One pot preparation of magnetic chitosan-cystamine composites for selective recovery of Au(III) from the aqueous solution. International Journal of Biological Macromolecules, v. 137, 721-731. http://dx.doi.org/10.1016/j.ijbiomac.2019.07.022.

Downloads

Published

2021-10-22

How to Cite

Otto, I. M., Morselli, L. B. G. A., Bunde, D. A. B., Pieniz, S., Quadro, M. S., & Andreazza, R. (2021). Adsorption of methylene blue dye by different methods of obtaining shrimp residue chitin. Revista Brasileira De Ciências Ambientais (RBCIAMB), 56(4), 589–598. https://doi.org/10.5327/Z217694781170

More articles by the same author(s)