Adsorption of methylene blue dye by different methods of obtaining shrimp residue chitin

Main Article Content

Iliane Muller Otto
Luiza Beatriz Gamboa Araújo Morselli
Dienifer Aline Braun Bunde
Simone Pieniz
Maurízio Silveira Quadro
Robson Andreazza

Abstract

The textile industry, very important for the world economy, generates an effluent containing dyes, and which, when discarded in water bodies without proper treatment, can cause impacts to human health and the environment. One of these widely used dyes is methylene blue, whose characteristics are high solubility in water and its toxic potential, and which effects range from eye irritations, nausea, vomiting and even mental confusion. Among the potential adsorbents of this dye is chitin, which is a biopolymer extracted from the shrimp exoskeleton. Aiming at the development of a low-cost adsorbent material with potential use in the textile effluent treatment industry, the ability to remove methylene blue dye by shrimp residue chitin, obtained by eleven different methodologies, was verified. The three most efficient treatments reached approximately 75% of dye removal, proving the high adsorption power of shrimp residue. In addition to providing technological development of materials, the research brings socioeconomic benefits to the fishermen’s colony with the use of shrimp residue for the adsorption of other waste from the textile industry, contributing to the sustainability of both activities and reducing the environmental impact.

Article Details

How to Cite
Otto, I., Morselli, L., Bunde, D., Pieniz, S., Quadro, M., & Andreazza, R. (2021). Adsorption of methylene blue dye by different methods of obtaining shrimp residue chitin. Brazilian Journal of Environmental Sciences (Online), 56(4), 589-598. https://doi.org/10.5327/Z217694781170
Section
Articles

References

Adeeyo, R.O.; Edokpayi, J.N.; Bello, O.S.; Adeeyo, A.O.; Odiyo, J.O., 2019.
Influence of selective conditions on various composite sorbents for enhanced
removal of copper (II) ions from aqueous environments. International Journal
of Environmental Research and Public Health, v. 16, (23), 4596-4614. https://
doi.org/10.3390/ijerph16234596.
Ahmad, R.; Ansari, K., 2021. Comparative study for adsorption of congo red
and methylene blue dye on chitosan modified hybrid nanocomposite. Process
Biochemistry, v. 108, 90-102. http://dx.doi.org/10.1016/j.procbio.2021.05.013.
Ahmed, M.J.; Hameed, B.H.; Hummadi, E.H., 2020. Review on recent progress
in chitosan/chitin-carbonaceous material composites for the adsorption of
water pollutants. Carbohydrate Polymers, v. 247, 116690-116700. http://dx.doi.
org/10.1016/j.carbpol.2020.116690.
Assis, O.B.G.; Brito, D., 2008. Processo básico de extração de quitinas e
produção de quitosana a partir de resíduos da carcinicultura. Revista Brasileira
de Agrociência. v.14, (1), 91-100. https://doi.org/10.18539/cast.v14i1.1892.
Associação Brasileira da Indústria Têxtil e de Confecção (ABIT). Perfil do
Setor. ABIT, 2021 (Accessed March 20, 2021) at: https://www.abit.org.br/cont/
perfil-do-setor.
Auta, M.; Hameed, B.H., 2014. Chitosan-clay composite as highly effective and
low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chemical
Engineering Journal, v. 237, 352-361. https://doi.org/10.1016/j.cej.2013.09.066.
Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D., 1999. A review of potentially
low-cost sorbents for heavy metals. Water Research. v. 33, (11), 2469-2479.
https://doi.org/10.1016/S0043-1354(98)00475-8.
Bajaj, M.; Freiberg, A.; Winter, J.; Xu, Y.; Gallert, C., 2015. Pilot-scale chitin
extraction from shrimp sheik waste by desproteination and decalcification
with bacterial enrichment cultures. Applied Microbiology and Biotechnology,
v. 99, 9835-9846. https://doi.org/10.1007/s00253-015-6841-5.
Barbosa, R.P., 2014. Avaliação de risco e impacto ambiental. Erica, São Paulo.
Bedin, K.C.; Souza, I.P.A.F.; Cazetta, A.L.; Spessato, L.; Ronix, A.; Almeida, V.C.,
2018. CO2-spherical activated carbon as a new adsorbent for methylene blue
removal: kinetic, equilibrium and thermodynamic studies. Journal of Molecular
Liquids, v. 269, 132-139. http://dx.doi.org/10.1016/j.molliq.2018.08.020.
Chang, S.H., 2021. Gold(III) recovery from aqueous solutions by raw and
modified chitosan: a review. Carbohydrate Polymers, v. 256, 117423. http://
dx.doi.org/10.1016/j.carbpol.2020.117423.
Cunico, P.; Kumar, A.; Fungaro, D.A., 2015. Adsorption of dyes from simulated textile
wastewater onto modified nanozeolite from coal fly ash. Journal of Nanoscience
and Nanoengineering, v. 1, (3), 148-161 (Accessed December 19, 2020) at: http://
repositorio.ipen.br/bitstream/handle/123456789/25780/21710.pdf?sequence=1.
Dotto, G.L.; Santos, J.M.N.; Rodrigues, I.L.; Rosa, R.; Pavan, F.A.; Lima, E.C.,
2015. Adsorption of Methylene Blue by ultrasonic surface modified chitin.
Journal of Colloid and Interface Science, v. 446, 133-140. http://dx.doi.
org/10.1016/j.jcis.2015.01.046.
Dotto, G.L.; Vieira, M.L.G.; Gonçalves, J.O.; Pinto, L.A.A., 2011. Remoção dos
corantes azul brilhantes, amarelo crepúsculo e amarelo tartrazina de soluções
aquosas utilizando carvão ativado, terra ativada, terra diatomácea, quitina e
quitosana: estudo de equilíbrio e termodinâmica. Química Nova, v. 34, (7),
1193-1199. https://doi.org/10.1590/S0100-40422011000700017.
Dragnes, B.T.; Stormo, S.K.; Larsen, R.; Ernstsen, H.H.; Elvevoll, E.O., 2009.
Utilisation of fish industry residuals: screening the taurine concentration
and angiotensin converting enzyme inhibition potential in cod and Salmon.
Journal of Food Composition and Analysis, v. 22, (7-8), 714-717. https://doi.
org/10.1016/j.jfca.2009.01.020.
Ferreira, O.P.; Alves, O.L.; Macedo, J.S.; Gimenez, I.F.; Barreto, L.S., 2007.
Ecomateriais: desenvolvimento e aplicação de materiais porosos funcionais
para proteção ambiental. Química Nova, v. 30, (2), 464-467. https://doi.
org/10.1590/S0100-40422007000200039.
Frantz, T.S.; Silveira Jr., N.; Quadro, M.S.; Andreazza, R.; Barcelos, A.A.;
Cadaval Jr., T.R.S.; Pinto, L.A.A., 2017. Cu (II) Adsorption from copper mine
water by chitosan films and the matrix effects. Environmental Science and
Pollution Research International, v. 24, (6), 5908-5917. https://doi.org/10.1007/
s11356-016-8344-z.
Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B., 2016. A
critical review on textile wastewater treatments: possible approaches. Journal
of Environmental Management, v. 182, 351-366. https://doi.org/10.1016/j.
jenvman.2016.07.090.
Honório, L.M.C.; Lucena, G.L.; Silva, A.G.; Santos, V., 2014. Avaliação da
adsorção dos corantes azul de metileno (AM) e vermelho congo (VC) pela
quitosana reticulada com glutaraldeído. Revista de Química Industrial, 3º
trimestre, 35-40 (Accessed January 17, 2021) at: http://www.abq.org.br/
rqi/2014/744/RQI-744-pagina35.pdf.
Jawad, A.H.; Abdulhameed, A.S.; Reghioua, A.; Yaseen, Z.M., 2020. Zwitterion
composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue
and reactive red 120 dyes. International Journal of Biological Macromolecules,
v. 163, 756-765. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.014.
Jorge, I.R.; Tavares, F.P.; Santos, K., 2015. Remoção do corante azul de metileno
no tratamento de efluentes por adsorção em bagaço de cana de açúcar. Blucher
Chemical Engineering Proceedings, v. 2, (1), 491-500. https://doi.org/10.5151/
ENEMP2015-LE-730.
Khan, S.; Anas, M.; Malik, A., 2019. Mutagenicity and genotoxicity evaluation
of textile industry wastewater using bacterial and plant bioassays. Toxicology
Reports, v. 6, 193-201. https://doi.org/10.1016/j.toxrep.2019.02.002.
Kostag, M.; Seoud, O.A. El., 2021. Sustainable biomaterials based on cellulose,
chitin and chitosan composites: a review. Carbohydrate Polymer Technologies
and Applications, v. 2, 100079. http://dx.doi.org/10.1016/j.carpta.2021.100079.
Kumaran, S.; Anahas, A.M.P.; Prasannabalaji, N.; Karthiga, M.; Bharathi,
S.; Rajasekar, T.; Joseph, J.; Prasad, S.G.; Pandian, S.; Pugazhvendan, S.R.;
Aruni, W., 2021. Chitin derivatives of NAG and chitosan nanoparticles
from marine disposal yards and their use for economically feasible fish
feed development. Chemosphere, v. 281, 130746. https://doi.org/10.1016/j.
chemosphere.2021.130746.
Labidi, A.; Salaberria, A.; Fernandes, S.; Labidi, J.; Abderrabba, M., 2019.
Functional chitosan derivative and chitin as decolorization materials for
methylene blue and methyl orange from aqueous solution. Materials, v. 12, (3),
361. http://dx.doi.org/10.3390/ma12030361.
Lima, I.S.; Ribeiro, E.S.; Airoldi, C., 2006. O emprego de quitosana
quimicamente modificada com anidrido succínico na adsorção de azul de
metileno. Química Nova, v. 29, (3), 501-506. https://doi.org/10.1590/S0100-
40422006000300018.
Lobo-Recio, M.Á.; Lapolli, F.R.; Belli, T.J.; Folzke, C.T.; Tarpani,
R.R.Z., 2013. Study of the removal of residual aluminum through the
biopolymers carboxymethylcellulose, chitin, and chitosan. Desalination
and Water Treatment, v. 51, (7-9), 1735-1743. http://dx.doi.org/10.1080/1
9443994.2012.715133.
Longhinotti, E.; Furlan, L.; Laranjeira, M.C.M.; Fávere, V.T., 1996. Adsorção
de azul de metileno e croconato amarelo sobre o biopolímero quitina.
Química Nova, v. 19, (3), 221-223 (Accessed December 22, 2020) at: http://
quimicanova.sbq.org.br/detalhe_artigo.asp?id=4056
Ma, Z.; Liu, D.; Zhu, Y.; Li, Z.; Li, Z.; Tian, H.; Liu, H., 2016. Graphene
oxide/chitin nanofibril composite foams as column adsorbents for
aqueous pollutants. Carbohydrate Polymers, v. 144, 230-237. http://dx.doi.
org/10.1016/j.carbpol.2016.02.057.
Mabel, M.M.; Sundararaman, T.R.; Parthasarathy, N.; Rajkumar, J., 2019.
Chitin Beads from Peneaus sp. Shells asa Biosorbent for Methylene Blue Dye
Removal. Polish Journal of Environmental Studies, v. 28, (4), 2253-2259. http://
dx.doi.org/10.15244/pjoes/90359
Müller, L.C.; Alves, A.A.A.; Mondardo, R.I.; Sens, M.L., 2019. Adsorção do
azul de metileno em serragem de Pinus elliottii (pinus) e Drepanostachyum
falcatum (bambu). Engenharia Sanitária e Ambiental, v. 24, (4), 687-695.
http://dx.doi.org/10.1590/s1413-41522019160344.
Oliveira, F.M.; Coelho, L.M.; Melo, E.I., 2018. Avaliação de processo
adsortivo utilizando mesocarpo de coco verde para remoção do corante
azul de metileno. Matéria, v. 23, (4), 1-14. http://dx.doi.org/10.1590/s1517-
707620180004.0557.
Queiroz, M.T.A.; Queiroz, C.A.; Alvim, L.B.; Sabará, M.G.; Leão, M.M.D.;
Amorim, C.C., 2019. Reestruturação na forma do tratamento de efluentes
têxteis: uma proposta embasada em fundamentos teóricos. Gestão &
Produção, v. 26, (1), 1-14. http://dx.doi.org/10.1590/0104-530x1149-19.
Ribeiro, A.G.; Viana, M.; Hattori, G.; Constantino, V.R.; Perotti, G., 2018.
Extraction and characterization of biopolymers from exoskeleton residues
of the amazon crab Dilocarcinus pagei. Brazilian Journal of Environmental
Sciences, v. 50, 97-111. https://doi.org/10.5327/Z2176-947820180398.
Sabar, S.; Aziz, H.A.; Yusof, N.H.; Subramaniam, S.; Foo, K.Y.; Wilson, L.D.;
Lee, H.K., 2020. Preparation of sulfonated chitosan for enhanced adsorption of
methylene blue from aqueous solution. Reactive and Functional Polymers, v.
151, 104584. http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104584.
Sánchez, L.E., 2013. Avaliação de impacto ambiental: conceitos e métodos. 2.
ed. Oficina de Textos, São Paulo.
Shan, H.; Peng, S.; Zhao, C.; Zhan, H.; Zeng, C., 2020. Highly efficient removal
of As(III) from aqueous solutions using goethite/graphene oxide/chitosan
nanocomposite. International Journal of Biological Macromolecules, v. 164,
13-26. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.108.
Silva, E.O.; Andrade, T.D.; Araújo, E.B.; Zottis, R.; Almeida, A.R.F., 2018.
Produção de carvão ativado a partir da palha de azevém para adsorção de
corante têxtil. Congrega Urcamp, v. 15, (15), 194-208 (Accessed February 15,
2021) at: http://revista.urcamp.tche.br/index.php/rcjpgp/article/view/2814/1923.
Vieira, S. Análise de variância (ANOVA). Atlas, São Paulo, 2006, 204 pp.
Wan, M.; Qin, W.; Lei, C.; Li, Q.-H.; Meng, M.; Fang, M.; Song, W.; Chen, J.;
Tay, F.; Niu, L., 2021. Biomaterials from the sea: future building blocks for
biomedical applications. Bioactive Materials, v. 6, (12), 4255-4285. http://
dx.doi.org/10.1016/j.bioactmat.2021.04.028.
Wang, L.; Zhang, J.; Wang, A., 2011. Fast removal of methylene blue from
aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite
composite. Desalination, v. 266, (1-3), 33-39.
Yazidi, A.; Sellaoui, L.; Badawi, M.; Dotto, G. L.; Bonilla-Petriciolet, A.; Lamine,
A.B.; Erto, A., 2020. Ternary adsorption of cobalt, nickel and methylene blue on
a modified chitin: phenomenological modeling and physical interpretation of
the adsorption mechanism. International Journal of Biological Macromolecules,
v. 158, 595-604. http://dx.doi.org/10.1016/j.ijbiomac.2020.05.022.
Zhao, M.; Zhao, J.; Huang, Z.; Wang, S.; Zhang, L., 2019. One pot
preparation of magnetic chitosan-cystamine composites for selective
recovery of Au(III) from the aqueous solution. International Journal of
Biological Macromolecules, v. 137, 721-731. http://dx.doi.org/10.1016/j.
ijbiomac.2019.07.022.