Atlantic seabob shrimp as biomonitor of Cu and Zn near port activities: is it really a suitable choice?

Main Article Content

Ana Paula Madeira Di Beneditto
Keltony de Aquino Ferreira
Braulio Cherene Vaz de Oliveira
Carlos Eduardo de Rezende, Prof.
Inácio Abreu Pestana


The trace elements concentration in the muscle of the Atlantic seabob shrimp (Xiphopenaeus kroyeri) caught in coastal fishing highlighted copper (Cu) and zinc (Zn), both related to antifouling systems, as the main elements related to the intensity of port activities of southeast Brazil (~20—to 22ºS). The aim of this study is to analyze if the behavior of Cu and Zn in the muscle of this shrimp species is constant among different sampling sites, verifying if the species is suitable as biomonitor for these elements. The shrimps came from fisheries done in 2017 in Vitória, Anchieta, and Farol de São Tomé, southeast Brazil. After sampling, each individual was categorized for gender and maturity stage, measured, and weighted. Bulk muscle samples were freeze-dried for determination of Cu, Zn, and ratios of stable isotopes of carbon (δ13C) and nitrogen (δ15N). The data analysis verified if the concentration of Cu and Zn in male and female shrimps vary among maturity stages and sampling sites, and how the concentration of Cu and Zn is related to shrimps foraging area and/or trophic position. Both bioaccumulation and growth dilution occurred, but not in the same way for genders and sampling sites, with Cu showing more variability. Relationships between elements and shrimps foraging area and trophic position did not show a clear trend among the sampling sites. Regression models indicated moderate relationships, explaining 51% (Cu) and 60% (Zn) of the association with the foraging area in Anchieta, but up to 8% in Vitória and Farol de São Thomé. For the trophic position, the models explained 33% (Cu) and 34% (Zn) in Anchieta and up to 14% in Vitória and Farol de São Thomé. The results showed that the utilization of this shrimp species as biomonitor of marine coastal environments near port activities to monitoring the levels of Cu and Zn is not a suitable choice, at least in the spatial scale considered by this study.

Article Details

How to Cite
Di Beneditto, A. P., Ferreira, K., Vaz de Oliveira, B., de Rezende, C. E., & Pestana, I. (2021). Atlantic seabob shrimp as biomonitor of Cu and Zn near port activities: is it really a suitable choice?. Brazilian Journal of Environmental Sciences (Online), 56(4), 665-672.
Author Biographies

Ana Paula Madeira Di Beneditto, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)

PhD in Biosciences and Biotechnology

Professor at Universidade Estadual do Norte Fluminense Darcy Ribeiro (CBB, LCA), Campos dos Goytacazes (RJ), Brazil.

Keltony de Aquino Ferreira, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)

Master in Ecology and Natural Resources

PhD Student at Universidade Estadual do Norte Fluminense Darcy Ribeiro (CBB, LCA), Campos dos Goytacazes (RJ), Brazil.

Braulio Cherene Vaz de Oliveira, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)

Bachelor in Biological Sciences

Technician at Universidade Estadual do Norte Fluminense Darcy Ribeiro (CBB, LCA), Campos dos Goytacazes (RJ), Brazil.

Carlos Eduardo de Rezende, Prof., Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)

PhD in Biophysics

Professor at Universidade Estadual do Norte Fluminense Darcy Ribeiro (CBB, LCA), Campos dos Goytacazes (RJ), Brazil.

Inácio Abreu Pestana, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)

PhD in Ecology and Natural Resources

Researcher at Universidade Estadual do Norte Fluminense Darcy Ribeiro (CBB, LCA), Campos dos Goytacazes (RJ), Brazil.


Ali, H.; Khan, E., 2019. Trophic transfer, bioaccumulation, and
biomagnification of non-essential hazardous heavy metals and metalloids in
food chains/webs – Concepts and implications for wildlife and human health.
Human Ecology and Risk Assessment, v. 25, (6), 1353-1376.
Amara, I.; Miled, W.; Slama, R.B.; Ladhari, N., 2018. Antifouling processes
and toxicity effects of antifouling paints on marine environment. A review.
Environmental Toxicology and Pharmacology, v. 57, 115-130. https://doi.
Asante, K.A.; Agusa, T.; Mochizuki, H.; Ramu, K.; Inoue, S.; Kubodera, T.;
Takahashi, S.; Subramanian, A.; Tanabe, S., 2008. Trace elements and stable
isotopes (d13C and d15N) in shallow and deep-water organisms from the
East China Sea. Environmental Pollution, v. 156, (3), 862-873. https://doi.
Bissaro, F.G.; Gomes Jr., J.L.; Di Beneditto, A.P.M., 2013. Morphometric
variation in the shape of the cephalothorax of shrimp Xiphopenaeus kroyeri
on the east coast of Brazil. Journal of the Marine Biological Association
of the United Kingdom, v. 93, (3), 683-691.
Boos, H.; Costa, R.C.; Santos, R.A.F.; Dias-Neto, J.; Severino-Rodrigues, E.;
Rodrigues, L.F.; D’Incao, F.; Ivo, C.T.C.; Coelho, P.A., 2016. Avaliação dos
camarões peneídeos (Decapoda: Penaeidae). In: Pinheiro, M.; Boos, H. (Eds.),
Livro vermelho dos crustáceos do Brasil: avaliação 2010-2014. Sociedade
Brasileira de Carcinologia, Porto Alegre, pp. 300-317.
Branco, J.O.; Moritz-Júnior, H.C., 2001. Alimentação natural do camarão
sete-barbas (Xiphopenaeus kroyeri), na Armação do Itapocoroy, Penha, SC.
Revista Brasileira de Zoologia, v. 18, (1), 53-61.
Campos, B.R.; Dumont, F.C.; D’Incao F.; Branco, J.O., 2009. Ovarian
development and length at first maturity of the sea‑bob‑shrimp Xiphopenaeus
kroyeri (Heller) based on histological analysis. Nauplius, v. 17, (1), 9-12.
Dafforn, K.A.; Lewis, J.A.; Johnston, E.L., 2011. Antifouling strategies: History
and regulation, ecological impacts and mitigation. Marine Pollution Bulletin,
v. 62, (3), 453-465.
Di Beneditto, A.P.M.; Ferreira, K.A.; Oliveira, B.C.V.; Rezende, C.E., 2020.
Trace elements in commercial shrimps caught near port activities in
SW Atlantic Ocean and human health risk assessment on consumption.
Reginal Studies in Marine Science, v. 39, 101449.
Di Leonardo, R.; Mazzola, A.; Cundy, A.B.; Tramati, C.D.; Vizzini, S., 2017.
Trace element storage capacity of sediments in dead Posidonia oceanica mat
from a chronically contaminated marine ecosystem. Environmental
Toxicology and Chemistry, v. 36, (1), 49-58.
Ferreira, K.A.; Braga, A.A.; Di Beneditto, A.P.M., 2021. Can stable isotopes
be applied to determine shrimp stocks origin in SE Brazil? An approach for
utilization in fishery management. Ocean & Coastal Management, v. 205,
Food and Agriculture Organization – FAO. 2018. The state of world fisheries
and aquaculture 2018 - Meeting the sustainable development goals. License:
CC BY-NC-SA 3.0 IGO. FAO, Rome (Accessed January, 2021) at: http://www.
Fry, B., 2008. Stable Isotope Ecology. Springer-Verlag, New York, 308 pp.
Fry, B.; Carter, J.F.; Tinggi, U.; Arman, A.; Kamal, M.; Metian, M.; Waduge,
V.A.; Yaccup, R.B., 2016. Prawn biomonitors of nutrient and trace metal
pollution along Asia-Pacific coastlines. Isotopes in Environmental and Health
Studies, v. 52, (6), 619-632.
Hartnoll, R.G., 1982. Growth. In: Bliss, D. (Ed.), The Biology of Crustacea, 2.
Academic Press, New York, pp. 111-185.
Hatje, V., 2016. Biomonitors. In: Kennish, M.J. (Ed.), Encyclopedia of
Estuaries. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. pp. 83-
Jardim, L.P.; Fernandes, L.P.; Di Beneditto, A.P.M.; Silva, A.C.; Keunecke, K.A., 2011.
Growth and recruitment of the Atlantic seabob shrimp, Xiphopenaeus kroyeri (Heller,
1862) (Decapoda, Penaeidae), on the coast of Rio de Janeiro, southeastern Brazil.
Crustaceana, v. 84, 12-13, 1465-1480.
Karimi, R.; Chen, C.Y.; Pickhardt, P.C.; Fisher, N.S.; Folt, C.L., 2007.
Stoichiometric controls of mercury dilution by growth. Proceedings of the
National Academy of Sciences of the United States of America, v. 104, 18,
Karimi, R.; Fisher, N.S.; Folt, C.L., 2010. Multielement Stoichiometry in
aquatic invertebrates: When growth dilution matters. American Naturalist, v.
176, (6), 699-709.
Khitalishvili, K., 2016. Monte Carlo Simulation in R: Basic Example (Accessed
January, 2021) at:
Lacerda, D.; Vergílio, C.S.; Silva Souza, T.; Viana Costa, L.H.; Rangel, T.P.; Vaz
de Oliveira, B.C.; Ribeiro de Almeida, D.Q.; Pestana, I.A.; Almeida, M.G.;
Rezende, C.E., 2020. Comparative metal accumulation and toxicogenetic
damage induction in three neotropical fish species with distinct foraging habits
and feeding preferences. Ecotoxicoly and Environmental Safety, v. 195, 110449.
Lenth, R., 2019. emmeans: Estimated Marginal Means, aka Least-Squares
Means. R package version (Accessed January, 2021) at: https://
Liu, H.; Liu, G.; Yuan, Z.; Ge, M.; Wang, S.; Liu, Y.; Da, C., 2019. Occurrence, potential
health risk of heavy metals in aquatic organisms from Laizhou Bay, China. Marine
Pollution Bulletin, v. 140, 388-394.
Liu, Y.; Liu, G.; Yuan, Z.; Liu, H.; Lam, P.K.S., 2018. Heavy metals (As, Hg
and V) and stable isotope ratios (δ13C and δ15N) in fish from Yellow River
Estuary, China. Science of the Total Environment, v. 613-614, 462-471. http://
Madigan, D.J.; Litvin, S.Y.; Popp, B.N.; Carlisle, A.B.; Farwell, C.J.; Block, B.A.,
2012. Tissue turnover rates and isotopic trophic discrimination factors in the
endothermic teleost, Pacific bluefin (Thunnus orientalis). PLoS One, v. 7, 11,
Maurya, P.K.; Malik, D.S.; Yadav, K.K.; Kumar, A.; Kumar, S.; Kamyab,
H., 2019. Bioaccumulation and potential sources of heavy metal
contamination in fish species in River Ganga basin: Possible human
health risks evaluation. Toxicololy Reports, v. 6, 472-481. https://doi.
Nikolaou, M.; Neofitou, N.; Skordas, K.; Castritsi-Catharios, I.; Tziantziou, L.,
2014. Fish farming and anti-fouling paints: a potential source of Cu and Zn
in farmed fish. Aquaculture Environmental Interactions, v. 5, 163-171. http://
Post, D.M.; Layman, C.A.; Arrington, D.A.; Takimoto, G.; Quattrochi, J.;
Montaña, C.G. 2007. Getting to the fat of the matter: models, methods and
assumptions for dealing with lipids in stable isotope analyses. Oecologia, v.
152, 179-189.
Pourang, N.; Dennis, J.H.; Ghourchian, H., 2004. Tissue distribution and
redistribution of trace elements in shrimp species with the emphasis on
the roles of metallothionein. Ecotoxicology, v. 13, 519-533. https://doi.
Rainbow, P.S., 2002. Trace metal concentrations in aquatic invertebrates:
why and so what? Environmental Pollution, v. 120, (3), 497-507. https://doi.
R Core Team. 2020. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria (Accessed January,
2021) at:
Signorell, A., 2020. DescTools: Tools for descriptive statistics. R package
version 0.99.34 (Accessed January, 2021) at:
Skoog, D.A.; Leary, J.L., 1992. Principles of instrumental analysis. Harcourt
Brace College Publishers, Orlando, 220 pp.
Stentiford, G.D.; Feist, S.W., 2005. A histopathological survey of shore crab
(Carcinus maenas) and brown shrimp (Crangon crangon) from six estuaries
in the United Kingdom. Journal of Invertebrates Pathology, v. 88, 2, 136-146.
Thomsen, V.; Schatzlein, D.; Mercuro, D., 2003. Limits of detection in
spectroscopy. Spectroscopy, v. 18, 12, 112-114.
Venables, W.N.; Ripley, B.D., 2002. Modern Applied Statistics with S. Springer-
Verlag, New York, 495 pp.
Willems, T.; De Backer, A.; Kerkhove, T.; Dakriet, N. N.; De Troch M.;
Vincx, M.; Hostens, K., 2016. Trophic ecology of Atlantic sea-bob shrimp
Xiphopenaeus kroyeri: Intertidal benthic microalgae support the subtidal food
web off Suriname. Estuarine Coastal and Shelf Science, v. 182, part A, 146-157.
Yilmaz, A.B.; Yilmaz, L., 2007. Influences of sex and seasons on levels of
heavy metals in tissues of green tiger shrimp (Penaeus semisulcatus de Hann,
1844). Food Chemistry, v. 101, (4), 1664-1669.