Qualitative assessment in river and phreatic aquifer water in a rural watershed in the Atlantic Forest biome

Main Article Content

Mateus Nascimento Vieira de Melo
http://orcid.org/0000-0002-8166-8621
Gustavo Antonio Piazza
https://orcid.org/0000-0001-8407-9606
Adilson Pinheiro
http://orcid.org/0000-0001-8546-0046
Edson Torres
http://orcid.org/0000-0001-9535-516X
Vander Kaufmann
http://orcid.org/0000-0002-2971-5128

Abstract

Watersheds have different water compartments (surface, subsurface, and underground) connected by the soil-water interface. In order to be able to relate these compartments, monitoring data are necessary, such as the case of the Ribeirão Concórdia watershed, in Lontras, Santa Catarina (SC). This study aimed to evaluate the behavior and the correlation between rainfall-runoff and phreatic surface levels with chemical species concentrations in surface and groundwaters in a rural watershed. Data of 3 piezometers installed in the hydrographic basin were used: PZ2127, PZ3, and PZMC. The piezometers are equipped with hydrostatic level sensors. A fluviometric station is located adjacent to PZ2127 (near the catchment outlet). Concentrations of anions and carbon forms were analyzed in water samples (river and piezometers) taken every 2-3 weeks, from January 14, 2012, to December 23, 2016, totaling 103 samples. Correlations between daily data were verified using Pearson’s correlation coefficient (ρ). The river presented a dilution effect, while the adjacent piezometer had the highest average concentrations of chemical species. Precipitation and chemical species concentration showed no seasonal pattern, with events/peaks throughout the year. Higher concentrations of carbon forms were found in the summer, while lower concentrations were observed in the winter. Positive correlations between concentrations of anions and carbon forms in surface and groundwaters were obtained.

Article Details

How to Cite
Vieira de Melo, M., Piazza, G. A., Pinheiro, A., Torres, E., & Kaufmann, V. (2022). Qualitative assessment in river and phreatic aquifer water in a rural watershed in the Atlantic Forest biome. Brazilian Journal of Environmental Sciences (Online), 57(1), 48-57. https://doi.org/10.5327/Z217694781041
Section
Articles

References

Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G., 2013.
Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v.
22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Associação Brasileira de Normas Técnicas – ABNT. 1987. NBR 9898:
Preservação e técnicas de amostragem de efluentes líquidos e corpos
receptores. ABNT, Rio de Janeiro, 22 pp.
Azevedo, J.C.R.; Moura, E.R.R.; Santos, M.M., 2016. Determinação de
pesticidas na água e sedimento do rio Piquiri. Revista em Agronegócio
e Meio Ambiente, v. 9, (3), 651-671. https://doi.org/10.17765/2176-
9168.2016v9n3p651-671.
Bayer, C.; Gomes, J.; Vieira, F.C.B.; Zanatta, J.A.; Piccolo, M.C.P.; Dieckow, J.,
2012. Methane emission from soil under long-term no-till cropping systems. Soil
and Tillage Research, v. 124, 1-7. https://doi.org/10.1016/j.still.2012.03.006.
Bruland, G.L.; Bliss, C.M.; Grunwald, S.; Comerford, N.B.; Graetz, D.A., 2008.
Soil nitrate-nitrogen in forested versus non-forested ecosystems in a mixeduse
watershed. Geoderma, v. 148, (2), 220-231. https://doi.org/10.1016/j.
geoderma.2008.10.005.
DIONEX, 2010. Achieving low baseline noise for anion determinations by
suppressed conductivity using carbonate eluents. DIONEX, Sunnyvale, 4 pp.
Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, 2004. Solos do
estado de Santa Catarina. EMBRAPA, Rio de Janeiro, 745 pp.
Esteves, F.A., 2011. Fundamentos de limnologia. Interciência, Rio de Janeiro, 826 pp.
Feitosa, F.A.C.; Manoel Filho, J., 2000. Hidrogeologia: conceitos e aplicações.
CPRM, Fortaleza, 391 pp.
Fernandes, J.D.; Souza, A.L.T.; Tanaka, M.O., 2014. Can the structure of a
riparian forest remnant influence stream water quality? A tropical case study.
Hydrobiologia, v. 724, 175-185. https://doi.org/10.1007/s10750-013-1732-1.
Freitas, M.D.F.P.P., 2020. Integração de ferramentas de modelagem ambiental,
fragmentação da paisagem e tratamentos estatísticos na avaliação da qualidade
das águas. Revista Brasileira de Ciências Ambientais, v. 55, (4), 552-569.
https://doi.org/10.5327/Z2176-947820200651.
Guggenmos, M.R.; Daughney, C.J.; Jackson, B.M.; Morgenstern, U., 2011.
Regional-scale identification of groundwater-surface water interaction using
hydrochemistry and multivariate statistical methods, Wairarapa Valley, New
Zealand. Hydrology and Earth System Science, v. 15, 3383-3398. https://doi.
org/10.5194/hess-15-3383-2011.
Kaufmann, V.; Pinheiro, A.; Silva, M.S.; Castro, N.M.R.; Marques, M.D., 2009.
Aporte de nutrientes em eventos de cheia. In: Simpósio Brasileiro de Recursos
Hídricos, 13., 2009. Anais.
Kumar, S.K.; Babu, S.H.; Rao, P.E.; Selvakumar, S.; Thivya, C.; Muralidharan,
S.; Jeyabal, G., 2017. Evaluation of water quality and hydrogeochemistry of
surface and groundwater, Tiruvallur District, Tamil Nadu, India. Applied
Water Science, v. 7, 2533-2544. https://doi.org/10.1007/s13201-016-0447-7.
Li, P.; He, S.; Yang, N.; Xiang, G., 2018. Groundwater quality assessment
for domestic and agricultural purposes in Yan’an City, northwest China:
implications to sustainable groundwater quality management on the Loess
Plateau. Environmental Earth Sciences, v. 77, 775. https://doi.org/10.1007/
s12665-018-7968-3.
Lubitz, E.; Pinheiro, A.; Kaufmann, V., 2013. Simulação do transporte de
sedimentos, nitrogênio e fósforo na bacia do ribeirão Concórdia, SC. Revista
Brasileira de Recursos Hídricos, v. 18, (2), 39-54. https://doi.org/10.21168/
rbrh.v18n2.p39-54.
Martí, E.; Fisher, S.G.; Schade, J.D.; Welter, J.R.; Grimm, N.B., 2000.
Hydrological and chemical linkages between the active channel and the
riparian zone in an arid land stream. Verhandlungen des Internationalen
Verein Limnologie, v. 27, (1), 442-447. https://doi.org/10.1080/03680770.1998
.11901270.
Martinez, J.L.; Raiber, M.; Cox, M.E., 2015. Assessment of groundwater–
surface water interaction using long-term hydrochemical data and isotope
hydrology: headwaters of the Condamine River, Southeast Queensland,
Australia. Science of the Total Environment, v. 536, 499-516. https://doi.
org/10.1016/j.scitotenv.2015.07.031.
Midões, C.; Fernandes, J.; Costa, C.G., 2001. Água subterrânea: conhecer para
proteger e preservar. IGM, Lisboa, 24 pp.
Moura, L.H.A.; Boaventura, G.R.; Pinelli, M.P.A., 2010. Qualidade de
água como indicador de uso e ocupação do solo: Bacia do Gama - Distrito
Federal. Química Nova, v. 33, (1), 97-103. https://doi.org/10.1590/S0100-
40422010000100018.
Nascimento, S.A.M.; Barbosa, I.S.F., 2005. Qualidade da água do
aqüífero freático no Alto Cristalino de Salvador, Bacia do Rio Lucaia,
Salvador, Bahia. Revista Brasileira de Geociências, v. 35, (4), 543-540. htt
ps://10.25249/0375-7536.200535543550.
Palácio, H.A.Q.; Andrade, E.M.; Crisóstomo, L.A.; Teixeira, A.S.; Souza, I.H.,
2008. Selection of the determinates Trussu River water quality factors using
multivariable analysis. Geographia Technica, v. 5, 74-81.
Park, Y.; Kim, Y.; Park, S.; Shin, W.; Lee, K., 2018. Water quality impacts of
irrigation return flow on stream and groundwater in an intensive agricultural
watershed. Science of The Total Environment, v. 630, 859-868. https://doi.
org/10.1016/j.scitotenv.2018.02.113.
Piazza, G.A., 2019. Padrões hidroclimáticos e da qualidade da água
de uma bacia hidrográfica com agricultura familiar no Bioma Mata
Atlântica, sul do Brasil. Doctoral Thesis, Programa de Pós-Graduação
em Engenharia Ambiental, Fundação Universidade Regional de
Blumenau, Blumenau.
Piazza, G.A.; Depiné, H.; Kaufmann, V.; Pinheiro, A.; Gonçalves Junior, A.C.;
Oliveira, M.H.C., 2014. Spatial distribution of soil attributes in the Concórdia
river watershed in Southern Brazil. Environmental Quality Management, v. 24,
(2), 1-12. https://doi.org/10.1002/tqem.21385.
Santos, G.O.; Hernandez, F.B.T.H., 2013. Uso do solo e monitoramento dos
recursos hídricos no córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de
Engenharia Agrícola e Ambiental, v. 17, (1), 60-68. https://doi.org/10.1590/
S1415-43662013000100009.
Santos, G.O.; Ribeiro, R.L.; Parreira, T.P.; Silva, D.F.; Silva, K.A.; Azeredo,
C.F., 2019. Monitoramento da água em bacia hidrográfica com diferentes
usos do solo no município de Rio Verde (GO). Revista em Agronegócio
e Meio Ambiente, v. 12, (1), 249-271. https://doi.org/10.17765/2176-
9168.2019v12n1p249-271.
Silva, D.J.; Borges, A.L., 2009. Fertilizantes para fertirrigação. In: Borges, A.L.; Coelho,
E.F. (Eds.), Fertirrigação em fruteiras tropicais. Cruz das Almas, EMBRAPA.
Silva, J.J.F.; Migliorini, R. B., 2014. Caracterização das águas subterrâneas do
aquífero Furnas na região sul do estado de Mato Grosso. Geociências, v. 33,
(2), 261-277.
Soares, R.B.; Silva, S.M.O.; Souza Filho, F.A.; Studart, T.M.C.; Frota, R.L., 2020.
Groundwater vulnerability to agrochemical contamination. Revista Brasileira
de Ciências Ambientais, v. 55, (4), 440-455. https://doi.org/10.5327/10.5327/
Z2176-947820200531.
Torres, J.L.R.; Pereira, M.G.; Oliveira, F.A.; Paiva, J.; Cornélio, E.P.; Fernandes,
F.S., 2011. Análise das características quantitativas e qualitativas da microbacia
do córrego Barreiro, afluente do rio Uberaba. Revista Árvore, v. 35, (4), 931-
939. https://doi.org/10.1590/S0100-67622011000500018.
Vega, M.; Pardo, R.; Barrado, E.; Deban, L., 1998. Assessment of seasonal and
polluting effects on the quality of river water by exploratory data analysis.
Water Research, v. 32, (12), 3581-3592. https://doi.org/10.1016/S0043-
1354(98)00138-9.
Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M., 1998. Groundwater and
surface water: a single resource. USGS, Denver, 79 pp.