Effect of a temperature rise on metal toxicity for the aquatic biota: a systematic review

Main Article Content

Carla Juliana Nin
Suzelei Rodgher

Abstract

Ecosystems are subject to various stress factors, such as temperature rises due to climate changes and metal disposal. Thermal stress can amplify or mask the effects of metals on aquatic organisms. This study aims to carry out a systematic review on the effects of temperature rises due to climate changes on the toxicity of metals for freshwater organisms. Searches were made in different electronic databases and article selection was based on the following inclusion criteria: concordance with the question of a systematic review; publication in English, Spanish, and Portuguese between 1960 and 2020; and the use of standard methodology. Forty-three articles were included, which were classified with respect to the year and country of publication, test-organisms and metals studied, temperatures tested, and the effects observed. In 80% of the studies analyzed, a temperature rise was responsible for increasing the toxicity of metals for the aquatic organisms. The temperatures studied contemplated the temperature rise predicted by the Intergovernmental Panel for Climate Change at the end of the 21st century. Brazil stood out among the countries for having the greatest number of research studies in this area, although there is still the need for an increase in studies in tropical climate regions. Based on the literature review, it was shown that the metals most studied were copper and cadmium and the test-organisms most used in the research projects were fish. The information obtained from ecotoxicological studies is essential to predict the effects and prevent the risks associated with the metal contamination of aquatic ecosystems due to climate changes.

Article Details

How to Cite
Nin, C., & Rodgher, S. (2021). Effect of a temperature rise on metal toxicity for the aquatic biota: a systematic review. Brazilian Journal of Environmental Sciences (Online), 56(4), 710-720. https://doi.org/10.5327/Z217694781010
Section
Articles

References

Abdel-Tawwab, M.; Wafeek, M., 2014. Influence of water temperature and waterborne
cadmium toxicity on growth performance and metallothionein–cadmium
distribution in different organs of Nile tilapia, Oreochromis niloticus (L.). Journal of
Thermal Biology, v. 45, 157-162. https://doi.org/10.1016/j.jtherbio.2014.09.002.
Abdel-Tawwab, M.; Wafeek, M., 2017. Fluctuations in water temperature
affected waterborne cadmium toxicity: Hematology, anaerobic glucose
pathway, and oxidative stress status of Nile tilapia, Oreochromis niloticus (L.).
Aquaculture, v. 477, 106-111. https://doi.org/10.1016/j.aquaculture.2017.05.007.
Adamczuk M., 2016. Past, present, and future roles of small cladoceran
Bosmina longirostris (O. F. Muller, 1785) in aquatic ecosystems.
Hydrobiologia, v. 767, 1-11. https://doi.org/10.1007/s10750-015-2495-7.
Ahmed, T.; Zounemat-Kermani, M.; Scholz, M., 2020. Climate
change, water quality and water-related challenges: a review with
focus on Pakistan. International Journal of Environmental Research
and Public Health, v. 17, (22), 8518. https://doi.org/10.3390/
ijerph17228518.
Ali, H.; Khan, E.; Ilahi I., 2019. Environmental chemistry and ecotoxicology
of hazardous heavy metals: environmental persistence, toxicity, and
bioaccumulation. Journal of Chemistry, v. 2019, 6730305. https://doi.
org/10.1155/2019/6730305.
Amoatey, P.; Baawain, M. S., 2019. Effects of pollution on freshwater aquatic
organisms, Water Environment Research, v. 91, (10), 1272-1287. https://doi.
org/10.1002/wer.1221.
Azevedo, F.A.; Chasin, A.A.M., 2003. Metais. Gerenciamento da Toxicidade.
Atheneu InterTox, São Paulo, 554 pp.
Bae, E.; Samanta P.; Yoo J.; Jung J., 2016. Effects of multigenerational exposure
to elevated temperature on reproduction, oxidative stress, and Cu toxicity in
Daphnia magna. Ecotoxicology and Environmental Safety, v. 132, 366-371.
https://doi.org/10.1016/j.ecoenv.2016.06.034.
Boeckman, CJ.; Bidwell, J.R., 2006. The effects of temperature, suspended
solids, and organic carbon on copper toxicity to two aquatic invertebrates.
Water, Air, & Soil Pollution, v. 171, (1-4), p. 185-202. https://doi.org/10.1007/
s11270-005-9036-3.
Braz-Mota, S.; Fé, L.M.L.; Delunardo, F.A.C.; Sadauskas-Henrique, H.;
Almeida-Val, V.M.F.; Val, A.L., 2017. Exposure to waterborne copper and
high temperature induces the formation of reactive oxygen species and causes
mortality in the Amazonian fish Hoplosternum littorale. Hydrobiologia, v. 789,
(1), 157-166. https://doi.org/10.1007/s10750-016-2847-y.
Cardoso-Mohedano, J.G.; Bernardello, R.; Sanchez-Cabeza, J.A.; Ruiz-
Fernández, A.C.; Alonso-Rodriguez, R.; Cruzado, A., 2015. Thermal impact
from thermoelectric power plant on tropical coastal lagoon. Water, Air, & Soil
Pollution, v. 226, (1), 2202. https://doi.org/10.1007/s11270-014-2202-8.
Carvalho, C.S.; Fernandes, M.N., 2006. Effect of temperature on copper
toxicity and hematological responses in the neotropical fish Prochilodus
scrofa at low and high pH. Aquaculture, v. 251, (1), 109-111. https://doi.
org/10.1016/j.aquaculture.2005.05.018.
Copetti, D.; Salerno, F., 2020. Climate–water–ecosystem–interactions:
insights from four continent’s case studies. Water, v. 12, (5), 1445. http://doi.
org/10.3390/w12051445.
Daam, M.A.; Garcia, M.V.; Scheffczyk, A.; Römbke, J., 2020. Acute and chronic
toxicity of the fungicide carbendazim to the earthworm Eisenia fetida under
tropical versus temperate laboratory conditions. Chemosphere, v. 255, 126871.
https://doi.org/10.1016/j.chemosphere.2020.126871.
Da Silva, G.; Silveira, C.; Silva, M.; Marcos Júnior, A.; Souza Filho, F.;
Guimarães, S., 2020. Analysis of climate change projections on precipitation
and temperature in Brazilian hydrographic regions for the 21st century.
Brazilian Journal of Environmental Sciences (Online), v. 55, (3), 420-436.
https://doi.org/10.5327/Z2176-947820200624.
DeForest, D.K.; Meyer, J.S., 2015. Critical review: toxicity of dietborne
metals to aquatic organisms. Critical Reviews in Environmental Science and
Technology, v. 45, (11), 1176-1241. http://dx.doi.org/10.1080/10643389.2014.
955626.
Delorenzo, M.E., 2015. Impacts of climate change on the ecotoxicology of
chemical contaminants in estuarine organisms. Current Zoology, v. 61, (4),
641-652. https://doi.org/10.1093/czoolo/61.4.641.
Esteves, F.A., 2011. Fundamentos de limnologia. Interciência, Rio de
Janeiro, 790 pp.
Ferreira, A.L.G.; Serra, P.; Soares, M.V.M.; Loureiro, S., 2010. The influence of
natural stressors on the toxicity of nickel to Daphnia magna. Environmental
Science and Pollution Research, v. 17, (6), 1217-1229. https://doi.org/10.1007/
s11356-010-0298-y.
Gama-Flores, J.L.; Salas, M.E.H.; Sarma, S.S.S., 2014. Combined effects
of temperature (level and oscillation) and cadmium concentration on
the demography of Brachionus calyciflorus (Rotifera). International
Review of Hydrobiology, v. 99, (1-2), 173-177. https://doi.org/10.1002/
iroh.201301722.
Gama-Flores, J.L.; Sarma, S.S.S.; Nandini, S., 2005. Interaction among copper
toxicity, temperature and salinity on the population dynamics of Brachionus
rotundiformis (Rotifera). Hydrobiologia, v. 546, (1), 559-568. https://doi.
org/10.1007/s10750-005-4300-5.
Gill, K.C.; Fovargue, R.E.; Neeson, T.M., 2020. Hotspots of species loss do not
vary across future climate scenarios in a drought-prone river basin. Ecology
and Evolution, v. 10, (17), 9200-9213. https://doi.org/10.1002/ece3.6597.
Graham, C.T.; Harrod, C., 2009. Implications of climate change for the fishes
of the British Isles. Journal of Fish Biology, v. 74, (6), 1143-1205. https://doi.
org/10.1111/j.1095-8649.2009.02180.x.
Hallare, A.V.; Schirling, M.; Luckenbach, I.; Köhler, H.-R.; Triebskorn, R.,
2005. Combined effects of temperature and cadmium on developmental
parameters and biomarker responses in zebrafish (Danio rerio) embryos.
Journal of Thermal Biology, v. 30, (1), 7-17. https://doi.org/10.1016/j.
jtherbio.2004.06.002.
Hani, Y.M.I.; Turies, C.; Palluel, O.; Delahaut, L.; Bado-Nilles, A.; Geffard,
A.; Dedourge-Geffard, O.; Porcher, J.M., 2019. Effects of a chronic exposure
to different water temperatures and/or to an environmental cadmium
concentration on the reproduction of the threespine stickleback (Gasterosteus
aculeatus). Ecotoxicology and Environmental Safety, v. 174, 48-57. https://doi.
org/10.1016/j.ecoenv.2019.02.032.
Harmon, S.M.; Specht, W.L.; Chandler, G.T.A., 2003. Comparison of the
daphnids Ceriodaphnia dubia and Daphnia ambigua for their utilization
in routine toxicity testing in the Southeastern United States. Archives of
Environmental Contamination and Toxicology, v. 45, (1), 0079-0085. https://
doi.org/10.1007/s00244-002-0116-8.
Herrera-R, G.A.; Oberdorff, T.; Anderson, E.P.; Brosse, S.; Carvajal-Vallejos,
F.M.; Frederico, R.G.; Hidalgo, M.; Jézéquel, C.; Maldonado, M.; Maldonado-
Ocampo, J.A.; Ortega, H.; Radinger, J.; Torrente-Vilara, G.; Zuanon, J.; Tedesco,
P.A., 2020. The combined effects of climate change and river fragmentation on
the distribution of Andean Amazon fishes. Global Change Biology, v. 26, (10),
5509-5523. https://doi.org/10.1111/gcb.15285.
Heugens, E.H.W.; Jager, T.; Creyghton, R.; Kraak, M.H.S.; Hendriks, A.J.;
Van Straalen, N.M.; Admiraal, W., 2003. Temperature-dependent effects of
cadmium on Daphnia magna: accumulation versus sensitivity. Environmental
Science & Technology, v. 37, (10), 2145-2151. https://doi.org/10.1021/
es0264347.
Heugens, E.H.W.; Tokkie, L.T.B.; Kraak, M.H.S.; Hendriks, A.J.; Van Straalen,
N.M.; Admiraal, W., 2006. Population growth of Daphnia magna under
multiple stress conditions: joint effects of temperature, food, and cadmium.
Environmental Toxicology and Chemistry, v. 25, (5), 1399-1407. https://doi.
org/10.1897/05-294R.1.
Hilmy, A.M.; El-Domiaty, N.A.; Daabees, A.Y.; Latife, H.A., 1987. Toxicity
in Tilapia zilli and Clarias lazera (Pisces) induced by zinc, seasonally.
Comparative biochemistry and physiology. C, Comparative Pharmacology and
Toxicology, v. 86, (2), 263-265. https://doi.org/10.1016/0742-8413(87)90077-6.
Hochachka, P.W.; Somero, G.N., 2002. Biochemical adaptation:
mechanism and process in physiological evolution. Oxford University
Press, New York, 480 pp.
Hoffman, D.J.; Rattner, B.A.; Burton Jr., A.; Cairns, J.C., 2003. Handbook of
ecotoxicology. Taylor & Francis Group, New York, 1312 pp.
Intergovernmental Panel on Climate Change – IPCC. 2014. Climate Change
2014: impacts, adaptation, and vulnerability. Global and Sectoral Aspects.
Contribution of Working Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press,
United Kingdom and New York, 1132 pp.
Jacquin, L.; Gandar, A.; Aguirre-Smith, M.; Perrault, A.; Le Hénaff, M.; De Jong,
L.; Paris-Palacios, S.; Laffaille, P.; Jean, S., 2019. High temperature aggravates the
effects of pesticides in goldfish. Ecotoxicology and Environmental Safety, v. 172,
255-264. https://doi.org/10.1016/j.ecoenv.2019.01.085.
Kumar, A.; Gupta, A. K., 2006. Acute toxicity of mercury to the fingerlings of
Indian major carps (catla, rohu and mrigal) in relation to water hardness and
temperature. Journal of Environmental Biology, v. 27, (1), 89-92.
Kumar, N.; Gupta, S.K.; Bhushan, S.; Singh, A., 2019. Impacts of acute
toxicity of arsenic (III) alone and with high temperature on stress biomarkers,
immunological status and cellular metabolism in fish. Aquatic Toxicology, v.
214, 105233. https://doi.org/10.1016/j.aquatox.2019.105233.
Lambert, A.S.; Dabrin, A.; Morin, S.; Gahou, J.; Foulquier, A.; Foulquier, A.;
Coquery, M.; Pesce, S., 2016. Temperature modulates phototrophic periphyton
response to chronic copper exposure. Environmental Pollution, v. 208, (part
B), 821-829. https://doi.org/10.1016/j.envpol.2015.11.004.
Lambert, A.S.; Dabrin, A.; Foulquier, A.; Morin, S.; Rosy, C.; Coquery, M.;
Pesce, S., 2017. Influence of temperature in pollution-induced community
tolerance approaches used to assess effects of copper on freshwater
phototrophic periphyton. Science of the Total Environment, v. 607-608, 1018-
1025. https://doi.org/10.1016/j.scitotenv.2017.07.035.
Lannig, G.; Cherkasov, A.S.; Sokolova, I.M., 2006. Temperature-dependent
effects of cadmium on mitochondrial and whole-organism bioenergetics of
oysters (Crassostrea virginica). Marine Environmental Research, v. 62, (suppl.
1), S79-S82. https://doi.org/10.1016/j.marenvres.2006.04.010.
Lenard, T.; Ejankowski, W.; Poniewozik, M., 2019. Responses of phytoplankton
communities in selected eutrophic lakes to variable weather conditions. Water,
v. 11, (6), 1207. https://doi.org/10.3390/w11061207.
Madden, N.; Lewis, A.; Davis, M., 2013. Thermal effluent from the power
sector: an analysis of once-through cooling system impacts on surface water
temperature. Environmental Research Letters, v. 8, (3), 035006. https://doi.
org/10.1088/1748-9326/8/3/035006.
Martínez-Jerónimo, F.; Rodríguez-Estrada, J.; Martínez-Jerónimo, L.,
2008. Daphnia exilis Herrick, 1895 (Crustacea: Cladocera). una especie
zooplanctónica potencialmente utilizable como organismo de prueba en
bioensayos de toxicidad aguda en ambientes tropicales y subtropicales. Revista
Internacional de Contaminación Ambiental, v. 24, (4), 153-159.
Martins, T.S.; Carmo Junior, G.N.R., 2018. Avaliação de impacto ambiental:
uma revisão sistemática sob a ótica metodológica. E&S Engineering and
Science, v. 7, (2), 29-41. https://doi.org/10.18607/ES201876616.
Merçon, J.; Pereira, M.P.; Passos, L.S.; Lopes, I.O.; Coppo, G.; Barbosa, B.; Cabral, D.;
Gomes, C.G.L., 2019. Temperature affects the toxicity of lead-contaminated food
in Geophagus brasiliensis (QUOY & GAIMARD, 1824). Environmental Toxicology
and Pharmacology, v. 66, 75-82. https://doi.org/10.1016/j.etap.2018.12.013.
Messiaen, M.; De Schamphelaere, K.A.C.; Muyssen, B.T.A.; Janssen, C.R.,
2010. The micro-evolutionary potential of Daphnia magna population exposed
to temperature and cadmium stress. Ecotoxicology and Environmental Safety,
v. 73, (6), 1114-1122. https://doi.org/10.1016/j.ecoenv.2010.05.006.
Morin, S.; Lambert, A.S.; Rodriguez, P.; Dabrin, A.; Coquery, M.; Pesce,
S., 2017. Changes in copper toxicity towards diatom communities with
experimental warming. Journal of Hazardous Materials, v. 334, 223-232.
https://doi.org/10.1016/j.jhazmat.2017.04.016.
Nandini, S.; Picazo-Paez, E.A.; Sarma, S.S.S., 2007. The combined effects of
heavy metals (copper and zinc), temperature and food (Chlorella vulgaris) level
on the demographic characters of Moina macrocopa (Crustacea: Cladocera).
Journal of Environmental Science and Health, Part A, v. 42, (10), 1433-1442.
https://doi.org/10.1080/10934520701480789.
Noyes, P.D.; Lema, S.C., 2015. Forecasting the impacts of chemical pollution
and climate change interactions on the health of wildlife. Current Zoology, v.
61, (4), 669-689. https://doi.org/10.1093/czoolo/61.4.669.
Nussey, G.; Vuren, J.H.J.V.; Preez, H.H.D., 1996. Acute toxicity tests of copper
on juvenile Mozambique tilapia, Oreochromis mossambicus (Cichlidae), at
different temperatures. South African Journal of Wildlife Research, v. 26, (2),
47-55. https://hdl.handle.net/10520/EJC116995.
O’Briain, R., 2019. Climate change and European rivers: an ecohydromorphological
perspective. Ecohydrology, v. 12, (5), e2099. https://doi.
org/10.1002/eco.2099.
Oukarroum, A.; Perreault, F.; Popovic, R., 2012. Interactive effects of
temperature and copper on photosystem II photochemistry in Chlorella
vulgaris. Journal of Photochemistry and Photobiology B: Biology, v. 110, 9-14.
https://doi.org/10.1016/j.jphotobiol.2012.02.003.
Park, K.; Han, E.J.; Ahn, G.; Kwak, I.-S., 2020. Effects of thermal stress-induced
lead (Pb) toxicity on apoptotic cell death, inflammatory response, oxidative
defense, and DNA methylation in zebrafish (Danio rerio) embryos. Aquatic
Toxicology, v. 224, 105479. https://doi.org/10.1016/j.aquatox.2020.105479.
Pereira, C.M.S.; Blust, R.; De Schamphelaere, K.A.C., 2019. Effect of
temperature on nickel uptake and elimination in Daphnia magna.
Environmental Toxicology and Chemistry, v. 38, (4), 784-793. https://doi.
org/10.1002/etc.4352.
Pereira, C.M.S.; Deruytter, D.; Blust, R.; De Schamphelaere, K.A.C., 2017.
Effect of temperature on chronic toxicity of copper, zinc, and nickel to
Daphnia magna. Environmental Toxicology and Chemistry, v. 36, (7), 1909-
1916. https://doi.org/10.1002/etc.3714.
Perschbacher, P.W., 2005. Temperature effects on acute copper toxicity to
juvenile channel catfish Ictalurus punctatus. Aquaculture, v. 243, (1-4), 225-
228. https://doi.org/10.1016/j.aquaculture.2004.10.006.
Philippe, C.; Hautekiet, P.; Gregoir, A. F.; Thore, E. S. J.; Pinceel, T. S. R.;
Brendonck L.; De Boeck, G., 2018. Combined effects of cádmium exposure and
temperature on the annual killifish (Nothobranchius furzeri). Environmental
Toxicology and Chemistry, 37, (9), 2361-2371. https://doi.org/10.1002/ETC.4182.
Pinheiro, J.P.S.; Assis, C.B.; Muñoz-Peñuela, M.; Barbosa Júnior, F.; Correia,
T.G.; Moreira, R.G., 2019. Water temperature and acid pH influence the
cytotoxic and genotoxic effects of aluminum in the freshwater teleost Astyanax
altiparanae (Teleostei: Characidae). Chemosphere, v. 220, 266-274. https://doi.
org/10.1016/j.chemosphere.2018.12.143.
Pound, K.L.; Larson, C.A.; Passy, S.I., 2021. Current distributions and future
climate-driven changes in diatoms, insects and fish in US streams. Global
Ecology and Biogeography, 30, 63-78. https://doi.org/10.1111/geb.13193.
Qiu, J., 2012. Trouble on the Yangtze. Science, v. 336, (6079), 288-291. https://
doi.org/10.1126/science.336.6079.288.
Radinger, J.; Hölker, F.; Horký, P.; Slavík, O.; Dendoncker, N.; Wolter, C., 2016.
Synergistic and antagonistic interactions of future land use and climate change
on river fish assemblages. Global Change Biology, v. 22, (4), 1505-1522. https://
doi.org/10.1111/gcb.13183.
Raptis, C.E.; van Vliet, M.T.H.; Pfister, S. 2016. Global thermal pollution of
rivers from thermoelectric power plants. Environmental Research Letters, v.
11, 104011. https://doi.org/10.1088/1748-9326/11/10/104011.
Raymundo, L.B.; Rocha, O.; Moreira, R.A.; Miguel, M.; Daam, M.A., 2019.
Sensitivity of tropical cladocerans to chlorpyrifos and other insecticides as
compared to their temperate counterparts. Chemosphere, v. 220, 937-942.
https://doi.org/10.1016/j.chemosphere.2019.01.005.
Rehwoldt, R.; Menapace, L.W.; Nerrie, B.; Alessandrello, D., 1972. The effect
of increased temperature upon the acute toxicity of some heavy metal ions.
Bulletin of Environmental Contamination and Toxicology, v. 8, (2), 91-96.
https://doi.org/10.1007/BF01684513.
Salazar-Lugo, R.; León, A.; Lemus, M., 2009. Efecto del cadmio y de la
temperatura sobre el conteo de células sanguíneas del pez dulceacuícola
Colossoma macropomum. Revista Científica (Maracaibo), v. 19, (1), 1-11.
Sampaio, R.F.; Mancini, M.C., 2007. Estudos de Revisão Sistemática:
um guia para síntese criteriosa da evidência científica. Brazilian Journal
of Physical Therapy, v. 11, (1), 77-82. http://dx.doi.org/10.1590/S1413-
35552007000100013.
Sassi, A.; Annabi, A.; Kessabi, K.; Kerkeni, A.; Saïd, K.; Messaoudi, I., 2010.
Influence of high temperature on cadmium-induced skeletal deformities in
juvenile mosquitofish (Gambusia affinis). Fish Physiology and Biochemistry, v.
36, (3), 403-409. https://doi.org/10.1007/s10695-009-9307-9.
Schiedek, D.; Sundelinet, B.; Readman, J.W.; Macdonald, R.W., 2007.
Interactions between climate change and contaminants. Marine
Pollution Bulletin, v. 54, (12), 1845-1856. https://doi.org/10.1016/j.
marpolbul.2007.09.020.
Silva, L.C.M.; Daam, M.A.; Gusmao, F., 2020. Acclimation alters glyphosate
temperature-dependent toxicity: Implications for risk assessment under
climate change. Journal of Hazardous Materials, v. 385, 121512. https://doi.
org/10.1016/j.jhazmat.2019.121512.
Silva, V.; Marques, C.R.; Campos, I.; Vidal, T.; Keizer, J.J.; Gonçalves, F.;
Abrantes, N., 2018. Combined effect of copper sulfate and water temperature
on key freshwater trophic levels–approaching potential climatic change
scenarios. Ecotoxicology and Environmental Safety, v. 148, 384-392. https://
doi.org/10.1016/j.ecoenv.2017.10.035.
Stuhlbacher, A.; Bradley, M.C.; Naylor, C.; Calow, P., 1993. Variation in the
development of cadmium resistance in Daphnia magna Straus; effect of
temperature, nutrition, age and genotype. Environmental Pollution, v. 80, (2),
153-158. https://doi.org/10.1016/0269-7491(93)90141-A.
Tsui, M.T.K.; Wang, W.X., 2004. Temperature influences on the accumulation
and elimination of mercury in a freshwater cladoceran, Daphnia magna.
Aquatic Toxicology, v. 70, (3), 245-256. https://doi.org/10.1016/j.
aquatox.2004.09.006.
Val, J.; Muñiz, S.; Gomà J.; Navarro, E., 2016. Influence of global changerelated
impacts on the mercury toxicity of freshwater algal communities.
Science of the Total Environment, v. 540, 53-62. https://doi.org/10.1016/j.
scitotenv.2015.05.042.
Van Ginneken, M.; Blust, R.; Bervoets, L., 2019. The impact of temperature
on metal mixture stress: Sublethal effects on the freshwater isopod Asellus
aquaticus. Environmental Research, v. 169, 52-61. https://doi.org/10.1016/j.
envres.2018.10.025.
Vardhan, K.H.; Kumar, P.S.; Panda, R.C., 2019. A review on heavy metal
pollution, toxicity and remedial measures: current trends and future
perspectives. Journal of Molecular Liquids, v. 290, 111197. https://doi.
org/10.1016/j.molliq.2019.111197.
Vergauwen, L.; Hagenaars, A.; Blust, R.; Knapen, D., 2013. Temperature
dependence of long-term cadmium toxicity in the zebrafish is not
explained by liver oxidative stress: evidence from transcript expression to
physiology. Aquatic Toxicology, v. 126, 52-62. https://doi.org/10.1016/j.
aquatox.2012.10.004.
Wetzel, R.G., 2001. Limnology: lake and river ecosystems. Academic Press, San
Diego, 1006 pp.
Xu, X.; Wang, Y.-C.; Kalcic, M.; Muenich, R.L.; Yang, Y.C.E.; Scavia, D., 2019.
Evaluating the impact of climate change on fluvial flood risk in a mixed-use
watershed. Environmental Modelling and Software, v. 122, 104031. https://doi.
org/10.1016/j.envsoft.2017.07.013.
Yong, W.-K.; Sim, K.S.; Poong, S.W.; Wei, D.; Phang, S.M.; Lim, P.E., 2018.
Interactive effects of temperature and copper toxicity on photosynthetic
efficiency and metabolic plasticity in Scenedesmus quadricauda
(Chlorophyceae). Journal of Applied Phycology, v. 30, (6), 3029-3041. https://
doi.org/10.1007/s10811-018-1574-3.
Zagatto, P.A.; Bertoletti, E., 2006. Ecotoxicologia aquática: princípios e
aplicações. Rima, São Carlos, 464 pp.
Zebral, Y.D.; Fonseca, J.S.; Roza, M.; Costa, P.G.; Robaldo, R.B.; Bianchini, A.,
2020. Combining elevated temperature with waterborne copper: impacts on
the energy metabolism of the killifish Poecilia vivipara. Chemosphere, v. 253,
126631. https://doi.org/10.1016/j.chemosphere.2020.126631.
Zebral, Y.D.; Roza, M.; Fonseca, J.S.; Costa, P.G.; De Oliveira, C.S.; Zocke,
T.G.; Dal Pizzol, J.L.; Robaldo, R.B.; Bianchini, A., 2019. Waterborne copper
is more toxic to the killifish Poecilia vivipara in elevated temperatures:
Linking oxidative stress in the liver with reduced organismal thermal
performance. Aquatic Toxicology, v. 209, 142-149. https://doi.org/10.1016/j.
aquatox.2019.02.005.